

Nanogeochemistry: Nanostructures, emergent properties and their control on geochemical reactions and mass transfers

PRESENTED BY

Yifeng Wang

Sandia National Laboratories is a multimission laboratory manged and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2018-9465PE for UUR

Nanoscience: Size-Dependent Material Properties

Photophysical/Photochemical Processes in Semiconductor Nanoparticles (Roduner, 2006)

2

Size-dependent CdS band gap

ħ

(Lüning et al., 1999, Sold State Communication)

Nanogeochemistry 3

Wang (2014) Chemical Geology

Colloid-facilitated radionuclide transport

http://www.bbc.com/news/uk-england-cumbria-21253673

4

https://eesa.lbl.gov/radioactive-contamination-over-geologic-time/

Key radionuclides: Pu-239, Th-230, Am-241 - Strong interaction (colloids) U-238, Np-237 - Moderate interaction I-129, Tc-99 - Weak interaction (anions)

Colloids: ~1 - 1000 nm Nanoparticles: ~1 - 100 nm

5 Surface charge and sorption capability of nanoparticles

Surface charge density predicted by Monte-Carlo simulations for goethite nanoparticles (Abbas et al., 2008)

Madden et al., 2006, GCA

6 Effects of Nanopore Confinement

7 Model Systems for Studying Nanopore Confinement

Wang et al. (2008)

Model Systems for Studying Nanopore Confinement (cont.)

8

Wang et al., 2002, JCIS; 2003, Geology

h

Nanoconfinement and Ion Sorption

Nanopore confinement enhances ion sorption onto a solid-water interface for both cations and anions.

Zn²⁺ sorption on to controlled pore glass (Nelson et al., 2014)

10

ħ

Cu(II) sorption onto mesoporous silica (Knight et al., 2018)

11

ħ

12 Effect of Nanopore Confinement on Water

Kolesnikov et al., 2004

Postulations: Water molecules in nanopores are more restrained. $H_4SiO_4 = SiO_2(s) + 2H_2Opptn$ $M(H_2O)_n^{z+} = M^{z+} + nH_2O$ inner sphere Na⁺ + Cl = NaCl⁰ ion pairing

13 Uranyl Desorption from Synthetic Porous Goethite

ħ

Shale as a nanocomposite material

14

15 **EOS under Nanoconfinement**

Akkutlu, 2013

Overall goal: (1) Obtain a fundamental understanding of CH_4 - CO_2 - H_2O (or other fluid component) interactions in shale nanopores under high-pressure and high temperature reservoir conditions, and (2) integrate this understanding into reservoir engineering for efficient resource recovery and subsurface carbon sequestration.

Capabilities for Nanogeochemical Studies at Sandia National Laboratories Chemical Graney 378-378 (2014) 1-28

Synthesis of nanoporous В mater ials

16

А

Por estructur e characterization

Por estructure characterization (FIB)

Isolation of kerogen from Mancos shale

High pressure/high temperature sorption/desorption measurements

Pioneering work in nanogeochemistry. Access to DOE Center of Integrated Nanotechnology

Density functional theory (DFT) modeling

http://www.pflotran.org/applications.html TRAMANTO: Classical Density Functional Theory PFLOTRAN: Reactive transport modeling

Low pressure gas sorption measurements

Model Substances	Temp, °C	Gas Mixture, volume percent	Pressure, bar	Sorption Capacity, mg/g	Sorption Rate, mg/g min ⁻¹
DARCO activated carbon	25	85% CH ₄ + 15% CO ₂	1	28	0.68
	50	85% CH ₄ + 15% CO ₂	1	11	0.59
	75	85% CH ₄ + 15% CO ₂	1	9.0	0.31
	100	85% CH ₄ + 15% CO ₂	1	2.1	0.14
	125	85% CH ₄ + 15% CO ₂	1	1.8	0.10
Montmorillonite, <75 µm	25	85% CH ₄ + 15% CO ₂	1	2.8	4.7×10^{-2}
	50	85% CH ₄ + 15% CO ₂	1	0.30	9.6×10^{-3}
	75	85% CH ₄ + 15% CO ₂	1	0.19	6.7×10^{-3}
	100	85% CH ₄ + 15% CO ₂	1	0.18	5.1×10^{-3}
	125	85% CH ₄ + 15% CO ₂	1	0.12	3.3×10^{-3}
Crushed Shale	25	85% CH ₄ + 15% CO ₂	1	0.29	3.3×10^{-3}
	50	85% CH ₄ + 15% CO ₂	1	0.21	2.7×10^{-3}
	75	85% CH ₄ + 15% CO ₂	1	0.16	1.7×10^{-3}

Table 1. Experimental measurements of sorption capacities and sorption rates for the model substances at 1 bar total pressure

Experimental measurement of sorption capacity and sorption rate for a model substance at an elevated temperature and pressure

Time, minute

Model Substances	Temp, °C	Gas Mixture, volume percent	Pressure, PSI	Sorption Capacity (mixture) mg/g	Sorption Rate, mg/g min ⁻¹
Illite, <75 mm	50	90% CH ₄ + 10% CO ₂	300	190	1.5

19 Kerogen

Over-mature kerogen molecules

Ho, et al, Scientific Reports 28053

AAPG 96 (2012), 1099-1119

Density

Sample 1: 1.172g/cm³ Sample 2: 1.287g/cm³

Average :1.22±0.04 g/cm³ Experiment: 1.28±0.3g/cm³

Stankiewicz A, *et al.* (2015) Kerogen density revisited lessons from the Duvernay Shale. *In: Paper URTeC 2157904 at the Unconventional Resources Technology Conference, San Antonio, Texas, July 2015*

Pore size distribution

Method: Bhattacharya S & Gubbins KE (2006) Langmuir 22:7726-7731

Methane sorption and extraction from kerogen

20

ħ

Implication to decline curve

- Fractures shift the decline curves up and down.
- Matrix determines the slopes of decline curves.

Robertson (2013)

22 Methane Diffusion

Bulk

In kerogen nanopores

ħ

ħ

Kerogen preferentially retains CO₂ over CH₄

23

Pore specific effects on enhanced gas recovery

invasion of CO_2

24

Pore specific effects on enhanced gas recovery

Pore is too small for the invasion of $\ensuremath{\text{CO}_2}$

Methane and CO2 can diffuse in the direction parallel to the slit-pore surfaces

Assume that water thin films block the pore entrance.

 CO_2 invades through water and replaces CH_4 in the nanopore.

Kerogen Swelling upon Gas Sorption (PCCP, 2018)

ħ

Sorption-desorption hysteresis and chemo-mechanical coupling (?)

28

Emergent transport properties in nanopores: Isotopic fractionation

$$k_{app} = \frac{2r}{3RT} \left(\frac{8RT}{\pi M}\right)^{1/2} + \left[1 + \left(\frac{8\pi RT}{M}\right)^{1/2} \frac{\mu}{pr} \left(\frac{2}{\alpha} - 1\right)\right] \frac{cr^2}{8\mu}$$

M - Molecular weight

Wang (2018)

Mass dependent transport

Ultrafiltration in Nature

-20 -25 -30 -35 -40 δD (‰) -45 -50 -55 -60 Methwater -65 -70 -10 -7 -6 -5 -9 -8 -4 δ¹⁸O (‰)

Isotope fractionation of water by ultrafiltration across a compacted clay membrane (Coplen and Hanshaw, 1973)

Waters extracted from Opallinus Clay at Benken (Switzerland) (Wang, 2018)

The nanometer-scale mass transfer in shale matrix has important ramifications to large-scale flow and transport processes, leading to a set of isotopic signatures that may not be observed in a conventional reservoir or highly permeable groundwater aquifer system.

(†

Concluding remarks

Emergent properties

• Novel mineral-fluid interface chemistry may emerge when the dimension of one of the phases is reduced to nanometers.

Texture matters!

 Measurements on "isolated", unconfined surfaces may not be representative of actual geologic materials.

Perspectives

- Progress in nanoscience & technology
- Emergence of new properties (~40 identified in Wang 2014)

Geochemical implications

- New perspectives for understanding fundamental geochemical processes
 - Shale gas/oil
 - Nanofluidics and radionuclide transport in the subsurface
- Development of novel materials for environmental applications
 - New generation of buffer materials for waste isolation

Graphene sensor (Hadlington, 2008)

Acknowledgments

Contributors:

A. Miller

H. Gao

Ed Matteo

J. Kruichak

Y. Xiong

C. Bryan

J. Brinker

T. Ho

G. Xu

H. Xu (Univ. of Wisconsin)

M. Ding (Los Alamos National Lab)

Funding sources:

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. This research is supported by DOE LDRD program, DOE OCRWM S&T Program, DOE-UFD (SFWST) program, NETL, and the National Science Foundation.

