Development of a Novel Biphasic CO₂ Absorption Process with Multiple Stages of Liquid–Liquid Phase Separation for Post-Combustion Carbon Capture (DE-FE0026434)

Yongqi Lu

Illinois State Geological Survey University of Illinois at Urbana-Champaign

2018 NETL CO₂ Capture Technology Project Review Meeting Pittsburgh PA • August 15, 2018

1

Project Overview

Project objectives

- Develop new biphasic solvents
- Demonstrate process concept via laboratory column testing
- Generate engineering and scale-up data
- > High-level process and techno-economic analysis

Project duration

- > BP1: 10/1/15 to 06/30/17 (21 months)
- > BP2: 07/1/17 to 12/31/18 (18 months)

Funding profile

DOE funding	1,999,996					
BP1	1,079,663					
BP2	920,333					
Recipient cost share	501,052					
BP1	269,920					
BP2	231,132					
Total	2,501,048					

Project Participants

University of Illinois

Illinois State Geological Survey

- Solvent development
- Process development

Illinois Sustainable Technology Center

Assessment of solvent stability and corrosion impacts

Applied Research Institute

Molecular dynamics simulation study for solvent screening

Trimeric Corporation

Process feasibility and high-level TEA

Biphasic vs. Conventional Absorption Process

Benefits of biphasic process in stripper:

- Reduced equipment size due to reduced mass of solvent to be regenerated
- Reduced energy use and compression work due to reduced mass of solvent, high CO₂ loading, and elevated stripping pressure

Benefits in absorber via phase separation:

Reduced viscosity with separation of rich, viscous phase improves mass transfer rate and allows use of viscous solvents

Biphasic CO₂ Absorption Process with Multi-Stages of Liquid-Liquid Phase Separation

Proposed Biphasic CO₂ Absorption Process (BiCAP)

Novel Biphasic Solvents

Amine-based solvent blends:

- Phase transition behavior tunable with a proprietary solvent formulation approach, allowing for a wide selection of solvent components
- Consider multi-criteria (capacity, rate, CO₂ enrichment, viscosity, desorption pressure, stability, corrosion, and availability/cost)
- Water lean but aqueous form suitable for humid flue gas application

Project Scope of Work

Project Schedule

	SOPO BREAKOUT SCHEDULE"	START	/END		BU	IDGE	T PE	RIO	D 1			BUD	OGET	PEIR	OD 2	2
WBS	Description	Start	End	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q 12	Q13
1.0	Project management and planning	10/01/15	09/30/18													
1.1	Project management and planning	10/01/15	09/30/18													
1.2	Briefings and reports	10/01/15	09/30/18													
2.0	Screening and characterization of biphasic solvents	10/01/15	06/30/16													
2.1	Solvent screening tests on CO ₂ absorption and phase transition	10/01/15	06/30/16													
2.2	Solvent screening tests on CO ₂ desorption performance	10/01/15	06/30/16			а										
2.3	Molecular simulation study for solvent screening	10/01/15	06/30/16			b										
3.0	Measuring phase equilibria, absorption kinetics & solvent properties	01/01/16	09/30/16				Α									
3.1	Measurement of VLE data under absorption/desorption conditions	01/01/16	09/30/16													
3.2	Measurement of CO ₂ absorption kinetics	04/01/16	09/30/16				С									
3.3	Measurement of solvent properties	07/01/16	09/30/16													
4.0	Determining thermal and oxidation stabilities of selected solvents	04/01/16	12/31/16												\Box	
4.1	Oxidation stability of biphasic solvents	04/01/16	12/31/16													
4.2	Thermal stability of biphasic solvents	04/01/16	12/31/16					е								
5.0	Testing CO ₂ absorption and phase separation in a packed-bed column	04/01/16	06/30/17							В						
5.1	Modification of an exisiting absorption column	04/01/16	09/30/16				d									
5.2	Parametric testing of CO ₂ absorption and phase separation	07/01/16	06/30/17							f						
5.3	Rate-based modeling of CO ₂ absorption	10/01/17	06/30/17													
6.0	Development of a process sheet and preliminary process analysis	04/01/16	06/30/17													
6.1	Development of a conceptual process flow sheet	04/01/16	12/31/16													
6.2	Preliminary process analysis	07/01/16	06/30/17							g						
7.0	Testing CO ₂ desorption in a high-pressure flash and stripping column	07/01/17	06/30/18											С		
7.1	Modification of an existing packed-bed column	07/01/17	12/31/17									h				
7.2	Parametric testing of high-pressure flash and stripping	10/01/17	06/30/18											j		
7.3	Rate-based modeling of CO ₂ desorption	01/01/18	06/30/18													
8.0	Assessing the impact of solvent corrosion on the equipment	07/01/17	03/31/18													
8.1	Assessing the impact of solvent corrosion on the equipment	07/01/17	03/31/18										i			
9.0	Technical and economic feasibility study	01/01/18	12/31/18													D
9.1	Process simulation and mass & energy balance calculations	01/01/18	09/30/18													
9.2	Technical and economic feasibility study	04/01/18	12/31/18													k

 \Box All milestones up to date (a – j) are completed

Overview of Project Progress and Status

	Results	Status			
~80 solvents screened	2 solvents selected	Completed in BP1			
Vapor-liquid equilibria	VLE measured at both absorption & desorption conditions	Completed in BP1			
Absorption kinetics	Measured under full ranges of CO ₂ loadings	Completed in BP1			
Oxidation and thermal stabilities	Thermal stability at 150°C = MEA at 120°C; Oxidation degradation ~8 times < MEA	Completed in BP1			
Viscosity	CO ₂ -saturated rich phase < 50 cP at 40°C	Completed in BP1			
CO ₂ enrichment /phase transition	≥98% of total CO ₂ uptake enriched in <50% of original solution	Completed in BP1			
CO ₂ absorption coupled with multiple stages of phase separation	Process concept demonstrated on a lab 10 kWe absorption system; Faster rates of 2 biphasic solvents than MEA	Completed in BP1			
Corrosion effect	Updated in this presentation	Completed in BP2			
CO ₂ flash and stripping desorption process	Updated in this presentation	Completed in BP2			

Task 7. Testing CO₂ Desorption in a High-Pressure Flash and Stripping Column

- Rated at 200 °C and 300 psig
- 5-in ID, 2-ft high flash
- 2-in ID, 10-ft high stripping column
- Heat supplied by an electric steam generator

Contn'd

Combined Flash and Stripping Tests

(Flash temperatures were ~10°C lower than stripper reboiler)

1/3 to 2/3 of total CO₂ desorption occurred in flash or stripper
High pressures attained in flash (up to 11 bar) and stripper (up to 9 bar)

Heat Duty in Combined System

(Flash temperatures were $\sim 10^{\circ}$ C lower than stripper reboiler)

Heat duty in flash or stripper decreased with increasing P at same T

- Heat duty in flash (higher P and lower T) < stripper
- Heat duty of BiS6 < BiS4

Single Stripper Tests

 \square High stripping P at high T and high CO₂ lean loading

- BiS4: ~9 bar at 140 °C and lean loading of 0.45 mol/mol
- BiS6: ~7 bar at 149 °C and lean loading of 0.2 mol/mol
- □ 30-80% of CO₂ desorption obtained in stripper

Heat Duty in Single Stripper System

- □ Heat duty decreased with increasing stripping P at the same T
- Heat duty of BiS6 (2,000-2,800 kJ/kg) < BiS4 (2,400-2,600 kJ/kg)</p>
- Heat duty in single stripper < combined flash/stripper system (2,300-2,800 kJ/kg)
 - > Flash attained higher pressure, requiring less compression work

Task 8. Assessing the Impact of Solvent Corrosion on the Equipment

Two steel coupons to simulate equipment materials: CO120

- Carbon steel C1010
- Stainless steel 316L

Weight-loss assessment method:

- \Box Coupons saturated with solvents sealed in $\frac{1}{2}$ " OD, 4.0" long stainless steel tubes
- Tubes kept in incubators at required temperatures and time periods (2 or 4 weeks)
- Coupons weighed to calculate weight losses after clean up including low-pressure glass bead blasting according to ASTM standard G1

Corrosion rate $\left(\frac{\mu m}{yr}\right) = \frac{Weight loss (g) \cdot K}{Alloy density (g/cm^3) \cdot Exposed area (cm^2) \cdot Exposed time (hr)}$

Photographs of CS Coupons after Corrosion Tests

Slightly darker color showed for CS-C1010 coupons in MEA compared with BiS4 and BiS6 (before glass bead blasting cleaning)

No visible etching and pitting observed in all tests

Corrosion Rates of Carbon Steel (C1010) in 4 Weeks

□ Corrosion rates of CS-C1010: BiS6 < BiS4 < MEA:

BiS6 and BiS4 were 2-3 times less corrosive than MEA

Corrosion rates of SS-316L (1.5-4 μ m/y, data not shown) << CS-C1010

Little difference observed in SS corrosion rate among 3 solvents

Dissolved Metals in Solvents in 4 Weeks

Analysis of dissolved Fe, Cr, Mn, Mo, and Ni with ICP-OES confirmed corrosion rate results:

- BiS4 and BiS6 at 150°C less corrosive to CS and SS than MEA at 120°C.
- □ BiS4 and BiS6 less corrosive to CS than MEA at 40°C

SEM/EDX Analysis of Coupon Surface

Increase in O% on coupon surface indicates formation of Fe₂O₃ (brown), Fe₃O₄ (black), and/or FeCO₃ (brown)

Task 9. TEA Feasibility Study: Summary of Key Results from Previous (BP1) Process Analysis

	BiCAP	DOE Case 12 Rev 2a	Difference vs. Case 12			
CO ₂ Capture & Compression	\$378 MM	\$469 MM	-19%			
Total Parasitic Demands (MWe)	176	252	-30%			
Capture Plant Steam Derate	103	139	-26%			
Capture Plant Direct Electrical Derate	39	75	-48%			
Power Plant Auxiliary Load	34	38	-10%			
Other						
Solvent Make-Up Costs Due to	ሲባለለር	<u> </u>	1009/			
Degradation	ΦΖΙΝΙΙΝΙ	ΦΤΙΛΙΙΛΙ	+100%			

Energy Performance Analysis for an Updated Process Configuration in BP2

	BiCAP	DOE Case 12 (MEA)
Net Generating Capacity, MWe	550	550
Gross Generating Capacity, MWe	700	802
Amount of CO ₂ captured, tonne/hr	478	548
Total Steam Derate, MWe	71	139
Reboiler/Flash Heat Duty, MWth	278	542
Thermal to Electric Energy, %	25.6	25.6
Direct Electrical Derate, MWe	44.8	75.2
Compression Duty, MWe	31.5	44.9
Other (Pumps, Fans, etc.), MWe	13.3	30.3
Total Derate for CO ₂ Capture, MWe	116	214
Total parasitic use for entire plant, MWe	150	252

□ Parasitic power use: 16.6% for BiCAP vs. 25.4% for MEA

Total derate for BiCAP is 43% < MEA</p>

Plan for Future Work in This Project

Project will be completed by 12/31/2018:

Tests of CO₂ desorption under additional flash/stripping conditions with the laboratory 10 kWe desorption system (by 9/30/18)

Task 9. Final techno-economic analysis (by 12/31/18)

- Update process simulation results and heat & material balance information
- High-level cost analysis
- Sensitivity analysis

BiCAP Technology Development Vision

Acknowledgements

Project Members

University of Illinois:

Hong Lu; Hafiz Salih; Yang Du; Paul Nielsen;

Qing Ye; David Ruhter; Varenya Mehta (ISGS)

- Kevin O'Brien; Wei Zheng; BK Sharma (ISTC)
- Santanu Chaudhuri (ARI)

Trimeric Corporation:

Ray McKaskle; Katherine Dombrowski, Kevin Fisher;

Andrew Sexton; Darshan Sachde

DOE/NETL Project Manager: Andrew Jones