Development and Bench-Scale Testing of a Novel Biphasic Solvent-Enabled Absorption Process for Post-Combustion Carbon Capture (DE-FE0031600)

Presenter: Yongqi Lu

Illinois State Geological Survey
University of Illinois at Urbana-Champaign

2019 Carbon Capture, Utilization, Storage, and Oil & Gas Technologies Integrated Review Meeting

Pittsburgh PA • August 26, 2019

Project Overview

Technology Background

Scope of Work/Technical Approaches

Progress and Current Status

Plan for Future R&D and Scale-Up

Objectives

- Advance the development of biphasic solvents and absorption process from lab- to bench-scale
- Design, fabricate and test an integrated 40 kWe benchscale capture unit with simulated and real coal flue gases
- Demonstrate the technology progressing toward achieving DOE's Transformational Capture goals

Participants and Major Roles:

- Illinois State Geological Survey: Solvent & process development; Oversight of equipment fabrication & assembly; Bench tests
- ☐ Illinois Sustainable Technology Center: Chemical analysis for tests; EH&S study
- ☐ Trimeric Corporation:

 Equipment specs and design; TEA study

Project Duration and Budget

Project duration: 36 mon (4/6/18–4/5/21)

- □ BP1: 9 mon (4/6/18-1/5/19)
- □ BP2: 12 mon (1/6/19-1/5/20)
- □ BP3: 15 mon (1/6/20-4/5/21)

Funding Profile:

- DOE funding of \$2,981,778
- □ Cost share (in-kind & cash) of \$776,896 (20.7%)

Project Overview

Technology Background

Scope of Work/Technical Approaches

Progress and Current Status

Plan for Future R&D and Scale-Up

Biphasic CO₂ Absorption Process (BiCAP)

Impact on stripper:

- Reduced solvent mass to stripper leads to low sensible heat use and small equipment size
- Enriched CO₂ loading leads to high stripping pressure (i.e., low stripping heat and CO₂ compression work)

Impact on absorber:

Applicable for high-viscosity solvents
 via multi-stage LLPS to enhance rate

Novel BiCAP Solvents

Water-lean aqueous/organic amine blends:

- Tunable phase transition behavior (e.g., vol.% and loading partitions)
- In aqueous form suitable for humid flue gas application

Lab screening tests of ~80 solvents based on multiple criteria:

2 identified meeting all criteria (BiCAP-1 and BiCAP-2)

Lab experiments for biphasic solvent screening conducted in previous project

Features of BiCAP Solvents and Process

Two top-performing BiCAP solvents developed in previous project:

Lab-scale 10 kWe absorption and stripping column tests conducted in previous project:

- Absorption rate: 50% > MEA under respective operating conditions
- ☐ Reboiler heat duty:

 35-45% < MEA under respective stripping conditions
 </p>
- Stripping pressure:~6 bar (max. ~8.5 bar)

Project Overview

Technology Background

Scope of Work/Technical Approaches

Progress and Current Status

Plan for Future R&D and Scale-Up

Project Scope of Work

Main Success Criteria and Milestones

	Basis for Decision/Success Criteria
BP1	Solvent vapor and aerosol emissions assessed
	Power plant Host Site Agreement issued
	Completion of 40 kWe bench unit design
	(Design heat duty ≤ ~2,100 GJ/tonne of CO₂ and stripping P ≥ ~4 bar)
BP2	Identify suitable options for reclamation of biphasic solvents
	Fabrication of 40 kWe bench-scale unit
BP3	Bench unit install, commissioning & testing including 6-month
	parametric testing with a simulated flue gas and 2-week continuous
	testing with a slipstream of power plant flue gas;
	Demonstrate continuous operation & total energy use of ≤0.22 kWh//kg

BP1: All 7 milestones reached on schedule and all 3 criteria fulfilled;

BP2: 2 milestones in progress as scheduled

Project Overview

Technology Background

Scope of Work/Technical Approaches

Progress and Current Status

Plan for Future R&D and Scale-Up

(1) Solvent Volitivity, Emissions and Mitigation (T3)

Absorption column (4"ID x 9'H: 6' structured packing)

- **Aerosols generated** (10⁶-10⁷ #/cm³) to simulate flue gas
- Both vapor & aerosols monitored:
 - FTIR for measuring vapor
 - ➤ Scanning Mobility
 Particle Sizer (SMPS)
 and Optical Particle
 Sizer (OPS) combined
 for measuring 10-nm to
 10-μm aerosols
 - Membrane filters for collecting aerosols for GC-MS analysis

Gas-Phase Amine Emissions during Absorption & Water Wash

Emissions from absorber

Emissions after WW column

(Total emissions: amine vapor + vaporized aerosols (w/o filtration) measured by FTIR; Vapor emissions: amine vapor only (with filtration) by FTIR)

- MEA mist/droplets visually present at sampling port of absorber exit
- BiCAP solvents 2-4 times less emissions from absorber than MEA
- ~50-95% of BiCAP amine emissions were vapor in these tests
- Water wash removed ~20-70% of total amine emissions

Aerosol Emissions during Absorption & Water Wash

Absorber:

- Aerosol size grew (agglomeration, condensation, reaction-diffusion, etc.)
- Aerosol number concentration reduced significantly (by 60-90%)

WW column

- Aerosol size tended to decrease
- Particles might be generated/removed depending conditions

(2) Biphasic Solvent Degradation and Reclamation

Methods under lab testing to replace / reduce thermal reclamation needs:

- Ion exchange adsorption
- Activated carbon adsorption
- Membrane nanofiltration
- Thermal reclamation (baseline)

Selected degradation products as model compounds used in experiments

	Model Compound	Abbreviation	MW	Analytical technique
Thermal	N,N'-di(2-hydroxyethyl)urea	MEA Urea	60	GC-MS, LC-MS
degradation	1-(2-hydroxyethyl)-2- imidazolidinone	HEIA	130	GC-MS, LC-MS
products	N-(2- hydroxyethyl)ethylenediamine	HEEDA	179	GC-MS, LC-MS
Oxidative	Acetic acid	AcOH	60	LC-MS
degradation	Oxalic acid	OA	90	LC-MS
products	Formic acid	FA	46	LC-MS

Adsorption of Thermal Degradation Products with Carbons

- Two commercial carbons (microporous and micro/mesoporous) tested
- Adsorption of selected thermal HSS products not significant
- Work in progress to modify carbon surface polarity and functionalities to improve HSS adsorption

Rotating tumbler used for adsorption isotherm measurements at 23±1 °C

Removal of Oxidative Degradation Products with Ion Exchange Resins

- Isotherms of two resins measured:
 - Strong base resin showed high affinity to oxalic acid
 - Weak acid resin showed some affinity to formic acid
- Ion exchange column breakthrough tests in progress

(3) Design & Fabrication of Bench-Scale BiCAP Unit: Process Configuration Optimization (T4)

Flash + Stripper

Cold Bypass and Flash + Stripper

Energy-Efficient BiCAP Configuration Identified

	Simple	Flash+	Cold	Cold Bypass+
	Stripper	Stripper	Bypass	Flash/Stripper
Flash pressure, bar	n/a	9.7	n/a	9.7
Flash temperature, °C	n/a	140	n/a	144.5
Stripper pressure, bar	5.1	5.0	5.1	5.1
Reboiler temperature, °C	150	150	~150	~150
CO ₂ release from flash, %	0%	34.50%	0%	28.75%
CO ₂ release from stripper, %	100%	65.50%	100%	71.25%
IP/LP steam use				
Overall heat duty, kJ/kg CO ₂	2,613	2,649	2,132	2,441
Parasitic power loss, kWh/kg CO ₂	0.186	0.188	0.152	0.174
Compression work, kWh/kg CO ₂	0.058	0.053	0.058	0.054
Total energy use, kWh/kg CO ₂	0.244	0.242	0.209	0.227

Cold Bypass: high energy efficiency and low equipment complexity

^{*} BiCAP-1 solvent (vs. best-performing BiCAP-2) used for modeling

Design Optimization of 40 KWe Bench-Scale Unit

- Rigorous rate-based Aspen Plus model developed
- □ BiCAP-1 solvent (vs. best-performing BiCAP-2) used for design modeling

(Stripper (4" ID) with 15' height of Mellapak 250Y packing at fixed rich loading of 0.73 mol/mol amines in heavy phase and 150°C reboiler)

CO₂ removal from 40 kWe flue gas in absorber at fixed L/G of 5.5 (w/w)

Reboiler duty as a function of stripper packed height (90% CO₂ removal)

27' packing achieves 90% capture

 Stripper packing height directly affects heat duty: a taller column achieving better energy performance

Higher L/G leads to shorter packing requirement, but may increase stripper heat duty

Schematic of 40 kWe Bench-Scale Capture Unit

Preliminary Skid Footprint

- Skid and control panel design by ITG-Henneman
- Skid fab/assembly by UIUC Facilities & Services

Location of Bench-Scale Unit at Abbott power plant

Site used for (1) parametric testing with simulated flue gas for 6 months and (2) continuous testing with actual flue gas for 2 weeks

Project Overview

Technology Background

Scope of Work/Technical Approaches

Progress and Current Status

Plan for Future R&D and Scale-Up

BP2 and BP3 Work Plan

Progression of BiCAP Technology Development

10 kWe Tests, Laboratory

Separate
Absorber /
Stripper

Funding: DOE / UI (2015-2018)

Proof-of-Concept **Funding:** UI (Part of Dissertation Research, 2013-2015)

Solvent study,

Laboratory

Currently

40 kWe Tests, Laboratory & Power Plant Slipstream

Bench Scale Close-Loop Unit Funding: DOE / UI (2018-2021) 0.2-1 MWe, Power Plant /Test Center

Small Pilot
Funding: DOE /
UI / Corporate
Partners/ State

10 MWe, Power Plant

Large Pilot
Funding: DOE /
Corporate Partners
/State / UI

Acknowledgements

- **☐** Funding Support by DOE/NETL
- DOE/NETL Project Manager: Andrew Jones
- Aspen Tech for providing free aspenONE® license

Project Contributors:

Illinois State Geological Survey: Hafiz Salih; Paul Nielsen; Hong Lu; Qing Ye; Justin Mock; David Ruhter; Abiodun Fatai Oki

Illinois Sustainable Technology Center: Kevin O'Brien; Wei Zheng; BK Sharma; Vinod Patel; Stephanie Brownstein

<u>Trimeric Corporation</u>: Ray McKaskle; Katherine Dombrowski; Kevin Fisher; Andrew Sexton; Darshan Sachde

<u>University of Illinois Facilities & Services:</u> Mike Larson (Abbott); Mike Brewer (Abbott); Rick Rundus; Mohamed Attalla; Josh Rubin

<u>ITG-Henneman:</u> Imad Rahman; David Kryszczynski; Scott Prause; Beth Mader

Contact Info: Yongqi Lu
Illinois State Geological Survey

Tel: 217-244-4985; Email: yongqilu@lllinois.edu