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Production-scale verification of CWC-CSEM as MVA technology 
• Multi-phase system, fluid content change alters electrical conductivity  
• Dynamic system with CO2 injection, time-lapse monitoring
• Cost-efficient monitoring through use of existing wellbores

Integrated reservoir MVA  
• Coupled simulation  
• Constrained inversion 
• History matched with time-lapse CWC-CSEM and production data
• Collaboration with site operator - Denbury Resources, Inc.

Field site:  Bell Creek, Montana

Project Overview
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Charged wellbore casing controlled source electromagnetics
1. Electrical conductivity tied to reservoir fluid phase (oil / CO2 / water)

2. Development and maturation at active CCS-EOR project 

3. Constrained inversion using data from existing characterization

4. Static near-surface correction from transient EM data 

5. Integration with reservoir simulation

6. History matching for validation 

Methodology: Underlying Method
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Methodology: Workflow
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7

• CSEM transmitters inject 
current through legacy 
borehole casings deep into 
subsurface

• Current flows around 
resistive bodies (CO2)

• Surface measurements of E 
and B fields

• Time-lapse measurements 
to observe changes

• 4D inversion of electrical 
conductivity
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No internal borehole access!

Methodology: CWC-CSEM Principle
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• Rt saturated rock resistivity
• a tortuosity factor
• φ porosity

• Conductivity changes have been shown to be effective in mapping 
saturation in CCS settings (Yang et al., 2014) 

• Archie’s law and similar empirical relationships map resistivity to 
saturation

• Crosswell ERT requires dedicated wellbore jewelry and specialized 
construction

Image from: Xianjin Yang, Xiao Chen, Charles R. Carrigan, and Abelardo L. Ramirez (2014). 
“Uncertainty quantification of CO2 saturation estimated from electrical resistance tomography data 
at the Cranfield site”. In: International Journal of Greenhouse Gas Control 27.Supplement C, pp. 59 
–68. issn: 1750-5836.

• m cementation factor
• Sw saturation of water
• Rw brine resistivity

Methodology: CWC-CSEM Basis
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Methodology: CWC-CSEM Simulation
Resistive CO2 plume near charged wellbore casing
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Real component Imaginary component

Methodology: CWC-CSEM Simulation
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Real component Imaginary component

Methodology: CWC-CSEM Simulation
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Methodology: CWC-CSEM Simulation
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Transmitter Scenario 1:  Borehole to Surface

• Simplest configuration

• Only requires single borehole

• Rely on a conventional 

surface electrode

Methodology: CWC-CSEM Deployment
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• Improved depth of investigation

• Current path between casings 

• Less invasive, easier setup

• Requires additional access 

Transmitter Scenario 2:  Borehole to Borehole

Methodology: CWC-CSEM Deployment
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Base Camp

• Established next to Electrode-A borehole
• Provides shelter for personnel and electronics
• Close to Denbury office

Generator

Electrode ATransmitter

Base Tent

TX Wire

Methodology: CWC-CSEM Deployment
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Transmitter Station

• Transmitter box, Iso-amp, Zen-receiver, Laptop
• Full transmission cycle: ~ 4-hours
• Transmission run continuously throughout each 

day while the receivers are moved every 4-
hours to ensure that they capture a complete 
transmission cycle

Methodology: CWC-CSEM Deployment
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• Electrode A always
• Electrode B for borehole-

borehole array
• Tx wire connected to production 

tubing of legacy wells
• 25 Amps; 200 Volts
• Full transmission cycle is 

approximately 4 hours
• Warning signs placed on the 

wells
• Provides direct contact with 

reservoir

Transmitter: Borehole Electrode

Methodology: CWC-CSEM Deployment
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• Tx Electrode – B (scenario-1)
• “Layer-cake” construction
• Alternating layers of aluminum foil, soil, and 

a lot of salt water 
• Buried at approximately1-ft depth

Transmitter: Surface Electrode

Methodology: CWC-CSEM Deployment
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• South-west corner of each Rx Station
• Sealed box with Zen receivers and batteries
• Connects to receiver electrodes and B-coils
• Data collected for a minimum of 4-hours for full 

transmission cycle
• Data downloaded with laptop before moving the Rx 

station to the next location

Receiver Box

Methodology: CWC-CSEM Deployment
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• Center electrode near the receiver box in the 
south-west corner

• Additional electrodes buried 100-m to the north 
and east of the center electrode in L-shape

• Vector E-field measurements

Receiver Sensors: E-Field

Methodology: CWC-CSEM Deployment



21

• Three sensors measuring horizontal and vertical 
components of the B-field

• Located near center receiver station
• Approximately 1-ft deep for horizontal components

Receiver Sensors: B-Field

Methodology: CWC-CSEM Deployment
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Project Year 2017: Recap
• Significant initial developments

– Reservoir simulation modeling
– EM modeling codes
– Field survey planning

• Unexpected setback
– Loss of initially planned field site due to internal re-organization of site operator
– Initial field survey planning and reservoir simulations no longer valid

• Project adjustment
– New field site agreement with enthusiastic operator: Denbury Resources, Inc.
– Algorithms and procedures from initial field site in place and ready for new site

Current Status
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Current Project Year
• Budget Year coincides with calendar year; Updated PMP

• Currently eight months into BY-2

• New reservoir simulation data fully available, modeling on track

• Three field surveys since last Annual Review Meeting
– One test survey at a local ASR site in Arvada, CO:  August 2017
– Two field surveys at new CCS-EOR site:  October 2017, May 2018

• Remaining for BY-2
– Continue reservoir and EM modeling, data integration, interpretation
– One more field campaign in BY-2: October 2018

Current Status
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https://www.undeerc.org/pcor/co2sequestrationprojects/BellCreek.aspx 

Accomplishments:  Field Surveys

Site Background
• Bell Creek Integrated EOR & CO2 

Storage Project

• Powder River Basin

• South-eastern Montana

Field campaigns
• Two completed at CCS-EOR site
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Bell Creek Production
• Denbury Resources, Inc.

• 9 phases of production

• Current project is within the 
phase-5 production area
– Outlined in light-green
– Approximate 2-km x 3-km area
– Started in Summer 2017
– Combination of private, Denbury, 

and BLM lands

Accomplishments:  Field Surveys



261.5 km

Accessible lands

Non-accessible lands

Tx Wire between boreholes [2]

CWC-CSEM Tx Boreholes [3]

CWC-CSEM Rx – 2017 [18]

CWC-CSEM Rx – 2018 Extended [47]

TEM Stations [20]

Phase 5 Area

Accomplishments:  Field Surveys
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Accomplishments:  Field Surveys
CWC-CSEM Field Data E-field Data, June 2018, Borehole-pair one (magenta line)
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Accomplishments:  Field Surveys
CWC-CSEM Field Data E-field Data, June 2018, Borehole-pair two (magenta line)
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• Used in static correction 
• Complements induction logs, which do not cover near surface 
• Fast, mature, and reliable geophysical technique 

Accomplishments:  Field Surveys
TEM Data Acquisition and Inversion



Reservoir Model Properties

Transmitter

‘B’ casing

CO2 Injection well

Permeability Porosity

Accomplishments:  Reservoir Model

30
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Initial Simulation Results

Injection
Single well - 2612
Injection Rate: 2,000 MSCF/d
Injection Time: 5 years
Total CO2 injected: 100,000 tons

Grid
174 x 188 x 14
411,152 active cells

Fluid Saturations at 5 years

Accomplishments:  Reservoir Model



Initial Simulation Results
5 years CO2 injection

Water Saturation CO2 Gas Saturation CO2 in Oil Saturation Oil Saturation

1 mile

Accomplishments:  Reservoir Model
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Reservoir model: Expanding to conductivity for EM
Conductivity: S/m

ILD: ohm-m

D
ep

th
: m

et
er

s

Seismic horizons

Surface

Borehole: 97-11

TEM 
Inversion 
(red)

Well-log 
ILD 
(blue)

Conductivity: S/m
ILD: ohm-m

Seismic horizons

Topography

Borehole: 97-11

Multiphysics integration

Reservoir 

Accomplishments:  Data Integration



Reservoir model: Expanding to conductivity for EM
Accomplishments:  Data Integration

Archie’s law applied to reservoir simulation data at each time instance
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Reservoir model: Expanding to conductivity for EM
Accomplishments:  Data Integration
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Reservoir model: Expanding to conductivity for EM
Accomplishments:  Data Integration

Full 3D conductivity model of field site
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Algorithmic and modeling developments
• All tasks on track
• Reservoir model

– Software to link reservoir model to CWC-CSEM algorithm
– Successful application to Bell Creek

• CWC-CSEM algorithm
– Modified to work with new reservoir model format from above
– EM simulation codes enhanced:  flexibility and interoperability
– User interface for CESM code made more robust and flexible
– CESM code successfully run on high performance computing resources

Accomplishments: Summary
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Dissemination of information
• Web-site development

– multiphysics-mva.org &  cwc-csem.org
– Limited content at moment

• 2017 AIChE Annual Meeting, Presentation
– Topical conference:  Advances in Fossil Energy R&D
– Title:  Monitoring carbon sequestration using charged wellbore controlled 

sources electromagnetics and integrated reservoir models

• 2018 American Geophysical Union (AGU)
– Two abstracts submitted for poster presentation
– Reservoir simulation modeling; CWC-CSEM Field campaign at Bell Creek

Accomplishments: Summary
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– The need for efficient EM simulation algorithms
– The need for high performance computing facility

– The site access was a known risk,  but the actual need to change 
the field site did consume time and energy

– Need site-specific relationship between reservoir parameters and 
electrical conductivity

Lessons Learned
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– Bell Creek Field site serves as the field laboratory for previous 
SubTER seismic array presentation (EERC)

• Joint inversion of seismic and EM datasets a natural opportunity 
• Overlapping survey areas of investigation 

– EM methods can provide de-risking of exploration projects 
– Monitoring of CO2-EOR projects has wide application 
– EM methods can enhance seismic data in karst, subsalt, and 

anhydrite locations where seismic interpretation may be 
challenging 

Synergy Opportunities
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Field site, reservoir modeling, field campaigns

• Procedures and algorithms in place for reservoir modeling and 
simulations

• Reservoir model expanded to electrical conductivity model

• Two field campaigns completed at Bell Creek; two remaining
• Next field data acquisition campaign: October 2018

Summary: Overall Project Status
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• Benefit to the program

• Project overview

• Methodology

• Organizational chart

• Schedule

Appendix



46

SubTER Program Goals

1) Ensure storage permanence for injected CO2
– [AOI-1]:  Deploy and validate prototype carbon storage Monitoring, Verification, and 

Accounting (MVA) technologies in an operational field environment.

2) Advancing state of knowledge in geothermal exploration
– [AOI-2]:  Identify and validate new subsurface signals to characterize and image the 

subsurface advancing the state of knowledge in geothermal exploration.  

Benefit to the Program
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SubTER Pillars
1) Wellbore integrity - New sensors and adaptive materials are needed to ensure 

sustained integrity of the wellbore environment.
2) Subsurface stress and induced seismicity - Radically new approaches are 

needed to guide and optimize sustainable energy strategies and reduce the risks 
associated with subsurface injection.

3) Permeability manipulation – Greater knowledge of coupled processes will lead to 
improved methods of enhancing, impeding, and eliminating fluid flow.

4) New subsurface signals - DOE seeks to transform our ability to characterize 
subsurface systems by focusing on four areas of research: new signals, 
integration of multiple data sets, identification of critical system transitions, 
and automation.

Benefit to the Program



48

Project Benefits Statement
• Currently, there is a lack of cost-effective tools that are able to

– Probe to the required depths, and
– Be sensitive to changes in the makeup of the reservoir fluids

• Responsive technologies need to be sensitive to both
– Distribution of CO2 within reservoir, and
– Overburden where leakage may occur

• The proposed project is designed to address these requirements

Benefit to the Program
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Project Benefits Statement
The project will benefit the monitoring and tracking the fate of CO2 in a 
storage site by advancing the state of art through the following three 
components:

1) Time-lapse monitoring using charged wellbore casing controlled-source EM 
(CWC-CSEM) method
– data are to be interpreted through constrained coupled inversions using reservoir models
– electrical conductivity changes mapped to the reservoir properties, fluid saturations (phase)

Benefit to the Program
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Project Benefits Statement
The project will benefit the monitoring and tracking the fate of CO2 in a 
storage site by advancing the state of art through the following three  
components:

2) Improved characterization of reservoir properties such as relative permeability 
and dynamic states such as fluid saturations
– Integrate static and dynamic properties from time-lapse EM monitoring
– Improve existing reservoir models for long-term monitoring and tracking
– Characterize the distribution and migration of CO2

Benefit to the Program
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Project Benefits Statement
The project will benefit the monitoring and tracking the fate of CO2 in a 
storage site by advancing the state of art through the following three 
components:

3) Development of a responsive technology capable of imaging CO2 migration within 
the whole overburden

Benefit to the Program
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Project Benefits Statement
• Proposed technology relies upon

– Legacy infrastructure
– Minimal hardware installation

• It will be possible to install sensors permanently with minimal 
additional effort

• The field site was selected in order to:
– Validate the method at a WAG site that should provide a distinct target
– Leverage existing efforts by DOE-NETL in this area

Benefit to the Program
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Goals
• Production-scale verification of CWC-CSEM as MVA technology 

– Three phase system, fluid content-sensitive electrical conductivity  
– Dynamic system with WAG cycles, time-lapse monitoring
– Low cost through use of legacy wellbores

• Integrated reservoir MVA 
– Coupled simulation  
– Constrained inversion 
– History matched with time lapse CWC-CSEM and production data 

Project Overview:
Goals and Objectives
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Objectives
1. Develop software capabilities

– 3D CWC-CSEM simulations at reservoir scale    
– Forward looking survey design, informed with reservoir simulations  
– Constrained 3D inversion with a priori reservoir knowledge and near surface 

statics

2. Development of best practice recommendations for CWC-CSEM  
– Survey frequencies
– Data and inversion uncertainty
– Validation through CCS-EOR production data 

Project Overview:
Goals and Objectives
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Charged wellbore casing controlled source electromagnetics

1. Electrical conductivity tied to reservoir fluid phase (oil / CO2 / water)
2. Validation at active CCS-EOR project 
3. Constrained inversion from existing characterization
4. Static near surface correction from TEM data 
5. Integration with reservoir simulation 
6. History matching for validation 

Methodology
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Colorado School of Mines 
• Project lead 
• Survey design
• EM inversion/modeling lead 

University of Utah 
• Reservoir simulation lead
• Coupled modeling 

United States Geological Survey
• Field logistics lead 
• Statistical data analysis  

Communication plan
• Bi-monthly virtual meetings 

(GOTO Meeting, etc.) 
• Annual project meetings 

Project website 
• http://multiphysics-mva.org 
• Outreach and collaboration  

New Mexico Tech
• History matching

Organizational Chart / Communication Plan
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Proposed Schedule
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