Transformational Membranes for Pre-combustion Carbon Capture – DE-FE0031635

Yang Han and W.S. Winston Ho

William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University

Membranes for CO₂/H₂ Separation

Facilitated Transport Membrane

 Facilitated transport of CO₂ via reversible reaction with amin CO₂ + R-NH₂ + H₂O → R-NH₃⁺ + HCO₃⁻
 Facilitated transport = flux augmentation via reaction

Techno-economic Analysis CO₂ Partial Pressure Change and Membrane Allocation CO; partial pres - - - CO₂ permeance -- CO./H. selectivit Membrane 3 Membrane 2 Feed inle Hudropen recover 0.6 20 30 40 50 60 70 80 0.2 0.4 0.8 Percentage of Membrane 3 (%) Effect of Feed Pressure Effect of CO₂ Permeance --- COE increase 20 Membrane are: 17 COE increase of current branes 2 and 3 20 150 200 250 300 350 400 Feed pressure (bar) CO₂ permeance (GPU) Effect of H₂S/CO₂ Selectivity Effect of Membrane Cost 4 vnaas H₂S for curr Membranes 2 and 3 40 60 80 H₂S/CO₂ selectivity Membrane element cost (\$/m2 Techno-economic Analysis Based on Cases B5A and B5B in NETL baseline • Feasible separation performance at >30-bar feed pressure · Considerable reduction in gas cooling requirement compared to Selexol 15.7% COE increase for current compositions, >50% less than Selexol

- >99.4% H_2 recovery achieved by high CO_2/H_2 selectivity
- <6 ppm H_2S in sweet syngas, promising for use in chemical synthesis

Acknowledgements

- David Lang, DOE-NETLJosé Figueroa, DOE-NETL
- Jose Figueroa, DOE-NETL
 U.S. Department of Energy

2018 NETL CO₂ Capture Technology Project Review Meeting, Pittsburgh, PA