Universal Solvent Viscosity Reduction via Hydrogen Bonding Disruptors

Xu Zhou^a, Dustin Brown^a, Hunaid Nulwala^a, Jiannan Liu^b, Yao Li^b, Hyung Kim^b, Scott Chen^c

^a Liquid Ion Solutions LLC, ^b Carnegie Mellon University, ^c Carbon Capture Scientific

FE0031629

DOE Program Manager: Andrew Jones

2019 Carbon Capture, Utilization, Storage, and Oil & Gas Technologies Integrated Review Meeting August 26, 2019

Project Overview

- Funding: \$2,304,612
 - DOE: \$1,843,690
 - Cost Share: \$460,922
- Overall Project Performance Dates:
 - 10/01/2018 9/30/2021
- Project Participants:
 - Liquid Ion Solutions (LIS)
 - Carnegie Mellon University (CMU)
 - Carbon Capture Scientific (CCS)

Project Objectives

- Computer simulation to understand the molecular interactions in nonaqueous CO₂ capture solvents.
- Synthesis and characterization of hydrogen bonding disrupter molecules with the specific goal of significantly reducing the viscosity of non-aqueous carbon capture solvents in the presence of CO₂.
- Proof-of-concept performance testing to demonstrate the effectiveness of hydrogen bonding disrupters in lowering viscosity.
- Optimization of hydrogen bonding disruptor chemical structure based on insights gained from computational modeling and experimental proof-ofconcept studies.
- Demonstration of the effectiveness of the optimized hydrogen bonding disrupters in the presence of synthetic flue gas.

Technical Background - The Problem

Aqueous amine drawbacks:

- High energy cost for solvent regeneration
- Solvent loss due to evaporation
- Oxidative and thermal degradation in the adsorption-desorption cycles
- Corrosion problems

Non-aqueous amine drawbacks:

- High viscosity
 - Slower CO₂ uptake
 - Need more surface area (Larger equipment\$\$)

Effect of Hydrogen Bonding (HB) and Electrostatic (ES) on Viscosity

Molecular Weight: 60.10

2 Cp @25^oC

Molecular Weight: 62.07

37 Cp @25[°]C

Hydrogen bonding and ionic bonding in a monoethanolamine based solvent

The Solution –Segmentation

Fully HB/ES bonded network

Brakeage of the network in smaller units

Project Schedule

Research Progress

Task 2. Computational Hydrogen Bonding Model Development

Construction of Ab Initio Molecular Model

Force field parameterization based on OPLS-AA force field with the aid of ab-initio calculations:

- Ab-initio calculations for amines and cations at MP2/6-31G(d,p) level, while those for anions were at MP2/6-31G++(d,p) level.
- Partial charges were fitted using CHELPG method.

Solvent	MD	Viscosity at 300K lit.	Viscosity at 298.15K exp.
A1	11.15	10.51	13.8
A2	0.59	0.66	0.6
A3	2.28		1.3

Simulation of Relationship between Hydrogen Bonding and Viscosity

Quantitative Analysis of Co-solvent and Mixture Effects

1000 A2 + 1000 ion pairs (CO₂ mole fraction = 0.333) + additives (DMSO)

Only nitrogen atoms of ions are shown.

Size distribution of "hydrogen-bonded" ion networks in CO₂-loaded A1 and A2 systems

As DMSO are added, hydrogen-bonded ion network becomes "looser" and somewhat smaller

Type of	Mole fraction	Viscosity	Number	Number	Viscosity
annie		(CF)	molecules		or water (cP)
	amine		molecules	molecules	of water (cr)
A1	0.333	5148	300	0	3024
	0.370	8182	300	0	5278
	0.500	17641	300	0	8158
A2	0.188	16	300	0	14
	0250	78	300	0	44
	0.291	244	300	0	154
	0.333	684	300	0	377
	0.333	684	1000	0	175
	0.333	684	0	1300	742
	0.333	684	0	4000	207
	0.370	1134	300	0	957
	0.500	14370	300	0	6576
	0.500	14370	600	0	3309
A3	0.333	1197	300	0	568
	0.370	2029	300	0	1017
	0.500	7490	300	0	4010

Viscosity increases as CO₂/amine ratio increases

۰

٠

- Both DMSO and water have similar effect on viscosity reduction
- The higher the additive %, the more viscosity reduction

Task 3. Hydrogen Bonding Disruptor Proof-of-Concept Study

Obtained quantitative correlation between CO₂ uptake and FT-IR spectra

Task 3. Hydrogen Bonding Disruptor Proof-of-Concept Study cont'd

Initial Hydrogen Bonding Disruptor Synthesis

- Designed several classes of compounds with various molecular architectures and functionalities
- Prepared five promising candidates for viscosity testing.

Proof-of-Concept Viscosity Testing – Rheometer Setup

Task 3. Hydrogen Bonding Disruptor Proof-of-Concept Study cont'd

Effect of 10 wt.% additives on sparged A1

Task 3. Hydrogen Bonding Disruptor Proof-of-Concept Study cont'd

Effect of 10 wt.% LIS-D1-3 on sparged amines

Amine	CO₂ wt.%	Molar Ratio [CO ₂ /Amine]	Viscosity of Amine, cP	Viscosity of Amine + Additive, cP	% Reduction in Viscosity
A1	17.7	0.3021	189 ± 8	110 ± 1	41.8
A2	17.65	0.3012	22 ± 2	16 ± 1	27.3
A3	9.14	0.3021	4.8 ± 0.7	1.8 ± 0.04	62.5

Task 4. Investigation of Impacts of Viscosity on Solvent ¹⁷ Based CO₂ Capture Processes

Overall Approach

Task 4. Investigation of Impacts of Viscosity on Solvent ¹⁸ Based CO₂ Capture Processes cont'd

Obtained Viscosity Impact on Total Equipment Cost

VISCOSITY REDUCTION IN %

Task 4. Investigation of Impacts of Viscosity on Solvent ¹⁹ Based CO₂ Capture Processes cont'd

Estimated Viscosity Impact on Total Annual Operating Cost

Viscosity Reduction in %

Conclusions and Future Plan

- Computational study gave insights on hydrogen bonding in the model solvents, viscosity at various CO₂ level, and additive effect on viscosity reduction.
- Additives LIS-D1-3 and LIS-D1-5 showed 40-50 % viscosity reduction on all model amines.
- LIS-D1-3/A3 system showed viscosity around 2 cP, demonstrating the potential feasibility of the additive approach.
- Preliminary engineering analysis revealed that a 50% reduction in solvent viscosity will reduce total equipment cost of an absorption/stripping based process by 15%.
- In the process of designing and preparing Gen2 additives based on the insights gained from BP1 research.

Acknowledgement and Disclaimer

Acknowledgment: "This material is based upon work supported by the Department of Energy under Award Number DE-FE0031629."

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Thank you!

Any Questions?

