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Additively Manufactured Intensified Device for 
Enhanced Carbon Capture
• Background:

– Traditional solvent-based capture process and equipment: 
• Mass exchange reaction column
• Exothermic reaction leads to thermal bulge in column, lower capture 

efficiency
– Decoupled stages with external cooling:

• High equipment and space cost

• Objective:
– Design, rapid prototyping, demonstration and validation of 

enhanced CO2 capture with intensified devices
• Unified devices combining multiple thermodynamic operations into one 

unit: heat exchanger + mass exchanger
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• Printed heat exchangers - Heat exchanger is one of the main applications of 
additive manufacturing

• Complex fluid passages, not limited to tubular structures

Complex fluid 
passages

Conformal, 
non-circular 

internal 
passages
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Project Overview – Two-year effort ending 9/30/2019
• Task 1.0 – Project Management and Planning 
• Task 2.0 – Design Realization of Intensified Device
• Task 3.0 – Manufacturability (3D Printability) Study
• Task 4.0 – Experimental Validation of Device Core Metrics
• Task 5.0 – Advanced Manufacturing of Device-scale Prototype
• Task 6.0 – Device-scale Validation through Design of Experiments

– Set up an experimental facility that can be used to test the heat- and mass-transfer behavior 
of the intensified device

– Obtain pressure-drop data for the intensified packing device
– Obtain heat-transfer data and compare with modeling results for a nonreactive system (water-

air)
– Obtain heat- and mass-transfer data for the CO2-MEA reactive system; experiments guided by 

modeling
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Manufacturability (3D Printability) of 2nd Gen Int. Device

2nd generation intensified devices printed in 2019
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The Printed Aluminum and Sulzer Metal Packing Devices 
Shows Similar Water Mass Retained
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Experimental Facility for Column Scale Testing

A column was first set up to compare the hydraulic 
performance of commercial packing materials with 3D 
printed packing devices manufactured in this project

Stainless-steel 
and plastic Sulzer 
Mellapak 16-inch 
diameter packing 
elements 
(Thanks to Dr. 
Gary Rochelle)
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Column for Testing 8-inch Diameter Packing Elements

Air pump providing over 4,000 LPM
Stephen Bolton

Chemical Engineer Student
University of Delaware
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Pressure Drop Measurements vs Gas Velocity for the 
Irrigated System with the Intensified Device
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• 3D printed device behaves similarly to commercial devices for pressure drop
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Column Scale Validation of Intensified Device
• Overview

– The system’s primary task is to deliver a gas mixture of adjustable CO2 concentration 
and aqueous MEA in counter-current flow to an absorption column comprised by 
packing elements at controlled temperatures

• Mass Flow Control
– Required composition is achieved by

controlling flowrates of constituent gases

• Temperature Control 
– Gas and solvent will be heated to

between 30 and 80 °C
– Gas will be heated with a 3.6 kW

in-line air heater
– Solvent will be heated using a 11kW

tankless water heater
Schematic of experimental system 
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ORNL Absorption Column for Heat and
Mass Transfer Validations

Absorption column 
with packing elements 

• There are 7 commercial 
packing elements in the 
column in addition to the 
intensified device

• The intensified device was 
placed after the fourth 
element from the bottom
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Location of Temperature Bulge Depends on L/G Ratio

• The magnitude of the bulge is 
maximized near the center of 
the column
– At that location, there is a 

decrease in CO2 absorption

– Hypothesis:  Cooling the 
location of the bulge could 
promote higher CO2 absorption

(Kvaamsdal & Rochelle, 2008)
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Heat Transfer for the Nonreactive Air/Water System: 
Temperature Profiles of Water (Input Air : 80 C, 650 LPM) 
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Heat Transfer Study: Average Heat-Transfer Coefficient

• Heat transfer coefficient at selected experimental conditions

• Calculated heat transfer coefficient were consistent for all conditions

Air Flow Rate 
(LPM)

Air 
Temperature 

(°C)

Water 
Flow Rate 

(LPM)

Water 
Temperature 

(°C)

Heat-Transfer 
Coefficient 
(W/K-m2)

650 80 1.36 80 34.7
650 80 1.81 80 34.7
650 80 2.26 80 32.8
650 80 2.26 60 32.8
650 80 2.26 40 32.5
520 80 2.26 80 34.9
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Reactive MEA-CO2 System: Identify T bulge location
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• A lower L/G ratio was needed to move the temperature bulge to the 

middle



Cooling Effect on CO2 Capture

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9

Te
m

pe
ra

tu
re

 (°
C)

Time (minutes)

T1 Gas T2 Gas T3 Gas T4 Gas Cooling Started

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9

Te
m

pe
ra

tu
re

 (°
C)

T1 Liquid T2 Liquid T3 Liquid T4 Liquid Cooling Started

5.20

5.25

5.30

5.35

5.40

5.45

5.50

0 1 2 3 4 5 6 7 8 9

CO
2 

Co
nc

en
tr

at
io

n 
(%

)

CO2 Concentration Cooling Started

0

10

20

30

40

50

60

70

80

90

100

40 50 60 70 80 90

He
ig

ht
 (i

n)

Temperature (°C)

Temperature of Liquid
Before Cooling After Cooling

Air: 496 LPM
CO2: 84 LPM
Temperature: 80°C

Solvent: 2.9 LPM
Temperature: 70°C
MEA concentration: 25%

Before cooling, 
temperature bulge 

above device

Coolant: 1.55 LPM
Temperature: 
~5°C

T2

T3

T4

T1



40

50

60

70

80

90

0 5 10 15 20 25

Te
m

pe
ra

tu
re

 (°
C)

T4 Liquid T3 Liquid T2 Liquid T1 Liquid Cooling Started

30

40

50

60

70

80

90

0 5 10 15 20 25

Te
m

pe
ra

tu
re

 (°
C)

Time (Min)
T4 Gas T3 Gas T2 Gas T1 Gas Cooling Started

Cooling Effect on CO2 Capture

0

10

20

30

40

50

60

70

80

90

100

40 50 60 70 80 90

He
ig

ht
 (i

n)

Temperature (°C)

Temperature of Liquid
Before Cooling

Before cooling, 
temperature bulge below

the intensified device

1.2

1.4

1.6

1.8

2.0

2.2

0 5 10 15 20 25

CO
2 

Co
nc

en
tr

at
io

n 
(%

)

CO2 Data Cooling Started

Air: 120 LPM
CO2: 51.2 LPM
Temperature: 80°C

Solvent: 3.12 LPM
Temperature: 70°C
MEA: 25%

Coolant: 1.55 LPM
Temperature: 
~5°C

T1

T2

T3

T4



40

50

60

70

80

90

0 2 4 6 8 10 12 14 16 18

Te
m

pe
ra

tu
re

 (°
C)

T4 Liquid T3 Liquid T2 Liquid T1 Liquid Cooling Started

Cooling Effect on CO2 Capture

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 2 4 6 8 10 12 14 16 18

CO
2 

Co
nc

er
ta

tio
n 

(%
)

CO2 Concentration Cooling Started

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16 18

Te
m

pe
ra

tu
re

 (°
C)

Time (min)
T4 Gas T3 Gas T2 Gas T1 Gas Cooling Started

0

10

20

30

40

50

60

70

80

90

100

40 50 60 70 80 90

He
ig

ht
 (i

n)

Temperature (°C)

Temperature of Liquid
Before Cooling After Cooling

T1Air: 212 LPM
CO2: 90 LPM
Temperature: 80°C

Solvent: 3.12 LPM
Temperature: 70°C
MEA concentration: 25%

Before cooling, 
temperature bulge below

the intensified device

Coolant: 1.55 LPM
Temperature: 
~5°C

T2

T3

T4

Without cooling:
80% capture

With cooling: 
90% capture



2020

Conclusions and Accomplishments

• Conclusions: 
– Validated the enhanced CO2 capture of intensified device

• Accomplishments:
– Submitted Invention Disclosure 201804270, DOE S-138,941, and provisional patent application: 

“Multifunctional Intensified Reactor Device with Integrated Heat and Mass Transfer”

– Manuscript published: Bolton, S.; Kasturi, A.; Palko, S.; Lai, C.; Love, L.; Parks, J.; Sun, X.; Tsouris, 
C. “3D Printed Structures for Optimized Carbon Capture Technology in Packed Bed 
Columns,” Separation Science and Technology, 54, 2047-2058 (2019)

– Manuscript in internal review: Miramontes, E.; Love, L.; Lai, C.; Parks, J.; Sun, X.; Tsouris, C. 
“Additively Manufactured Packed Bed Devices for Process Intensification of CO2 Absorption 
and Other Chemical Processes”

– In discussions with Sulzer Chemtech Ltd, which produces packing elements for packed 
columns, toward commercialization of the intensified device
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