Stacked Greenfield and Brownfield ROZ Fairways in the Illinois Basin Geo-Laboratory: Co-optimization of EOR and Associated CO₂ Storage

DOE Project Number DE-FE0031700

Nathan Webb - PI Nathan Grigsby, Fang Yang, Scott Frailey Illinois State Geological Survey

Illinois State Geological Survey

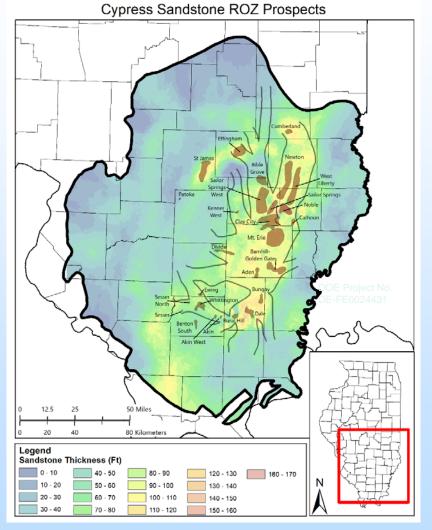
U.S. Department of Energy National Energy Technology Laboratory Addressing the Nation's Energy Needs Through Technology Innovation – 2019 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting

August 26-30, 2019

Presentation Outline

- Motivation
- Methodology
- Accomplishments
- Summary
- Future work
- Synergy opportunities
- Acknowledgements
- Appendices

Illinois Basin ROZ research


Motivation

Methodology Accomplishments

Summarv

Future

- ROZ fairway in Cypress Sandstone
 - Found greenfields and brownfields
 - Developed methods to identify /characterize ROZ
 - Well log analysis; historical data; core
 - Investigated geologic controls on RO7
 - **Developed production strategies**
- New Cypress CO₂-EOR and storage resource
 - ROZ fairway covers ~1.9 million acres
 - Contains ~1 million acre-ft of pore volume
 - Estimated resource in ROZ prospects:
 - 1.8 billion barrels of oil in place¹
 - 196 million barrels recoverable²
 - 10.4 billion tonnes associated CO_2 storage³

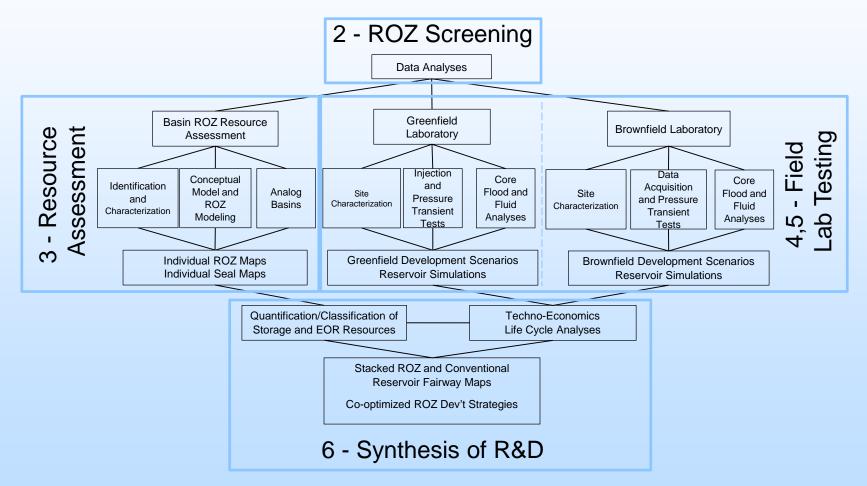
¹23% median S_{OR}

Illinois State Geological Survey PRAIRIE RESEARCH INSTITUTE

ILLINOIS

²80-acre WAG flood EOR factor of 11.4% assuming miscible conditions ³Net utilization of 1.479 Mscf/stb

Project tasks

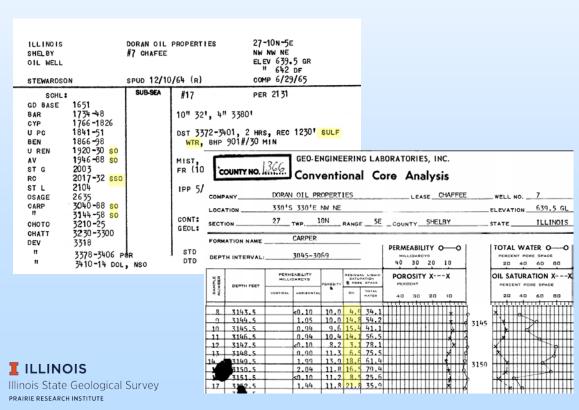

Motivation

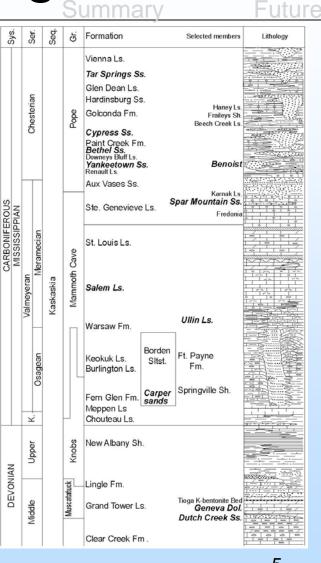
Methodology

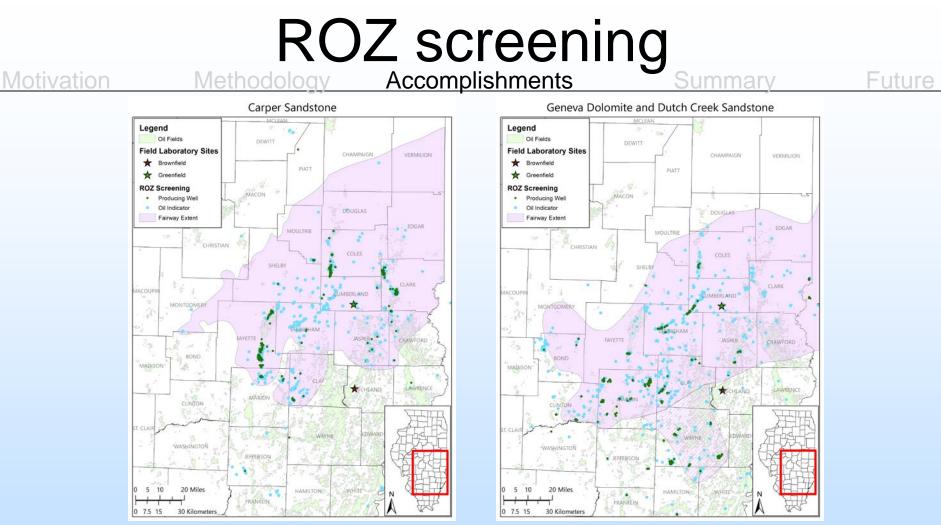
Accomplishments

Summary

Future


ILLINOIS Illinois State Geological Survey PRAIRIE RESEARCH INSTITUTE


ROZ screening Methodology

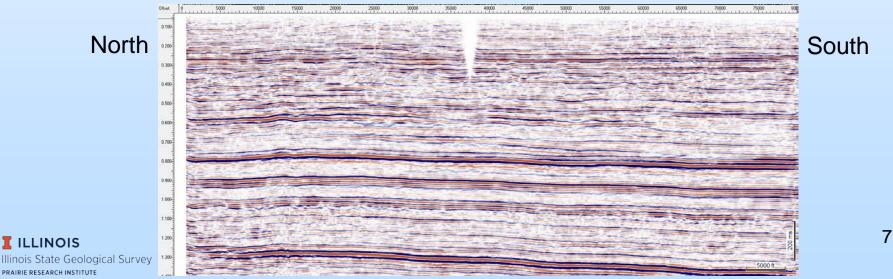

Motivation

Accomplishments

- Screening seven formations
 - Five siliciclastics, two carbonates
- Working with oil field database
 - Analyzing, digitizing, and mapping data

- Selecting three ROZs for regional characterization based on:
 - Geologic properties (porosity, permeability, fairway potential)
 - ROZ indicators (oil shows, core with $S_0 > 0$, DSTs with sulfur water e.g. Trentham and Melzer 2013)
 - Data availability (well logs, core)

ILLINOIS Illinois State Geological Survey prairie research institute


Data compilation and analyses

Motivation

Future

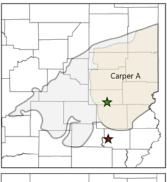
- Regional characterization of selected ROZs
 - Locating available core data
- Field lab sites
 - Brownfield site
 - Developing geological prognosis for research well
 - Acquired seismic as part of CarbonSafe (DE-FE0029445) ٠
 - Greenfield site
 - Obtained operator data (core analysis, completion, stimulation, production)

Noble Field

Characterization

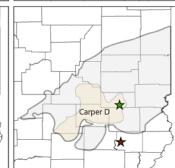
Motivation

Methodology


Accomplishments

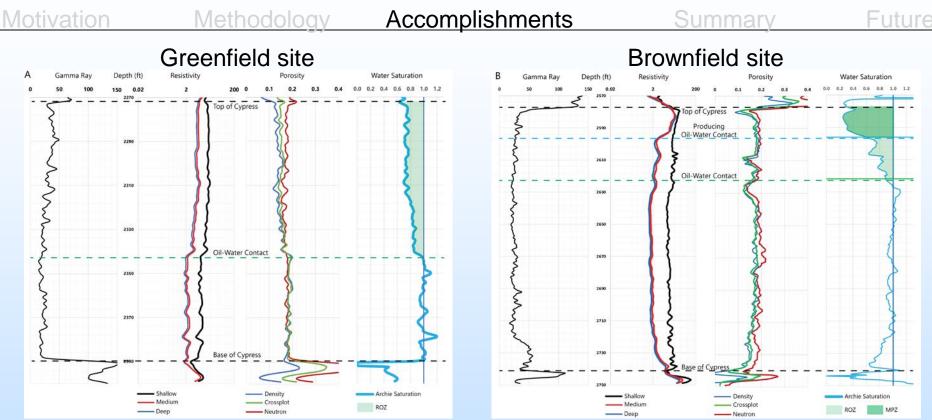
Summary

Future




- Developing geologic model for Carper Ss:
 - Mapping reservoir body geometry and architecture
 - Classifying facies
 - Characterizing petrophysical and mineralogical properties
 - Interpreting depositional environment and diagenetic histories
- Identifying samples to begin laboratory testing
 - Petrography, MICP, relative permeability, core flooding

Carper B



Well log analysis

- Analysis techniques
 - Developed and calibrated for the Cypress Sandstone
 - Adjusting to deal with more heterogeneous rocks

• Different lithology, mineralogy, texture, fluid properties, etc. 9

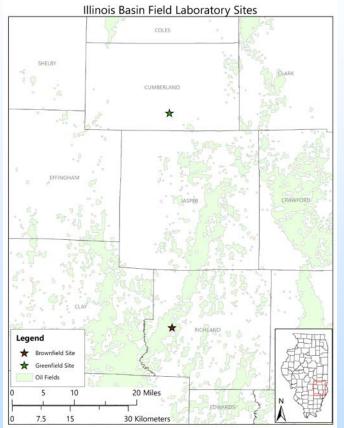
Illinois State Geological Survey Prairie research institute

IILLINOIS

Field laboratory test preparation

Motivation

Methodology


Accomplishments

Summarv

Future

Greenfield Site Plan

- Perform pressure transient tests in existing well
- Conduct short term CO₂ injection test (huff n' puff or single well chemical tracer test) to acquire oil rate change
 - Characterize ROZ
 - Demonstrate efficacy of CO₂-EOR in ROZ

Brownfield Site Plan

- Drill new well for reservoir characterization
 - Collect core and logs to validate Cypress ROZ
 - Correlate with previous field laboratory RST logging
 - Investigate geologic controls on residual oil saturation
 - Refine geologic
 interpretation
 - Sample reservoir fluids
 - Perform pressure transient tests
- Use field laboratory test data to calibrate reservoir models

Brownfield site – characterization

Motivation

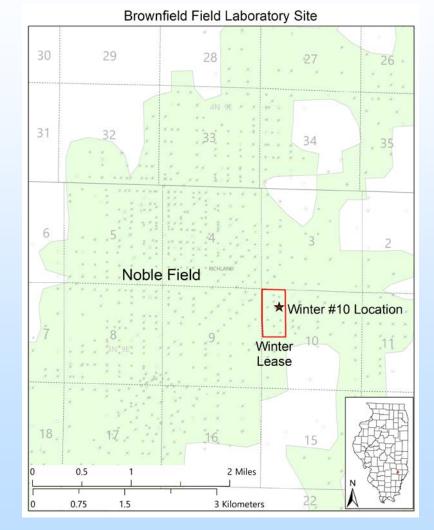
Methodology

Accomplishments

Summarv

- Identifying and correlating stacked ROZs and conventional reservoirs
 - Seven producing reservoirs; additional formations with oil indicators
- Developing maps to be used in models and reservoir simulations
- Identifying available core

Brownfield site – well planning


Motivation

Methodology

Accomplishments

Summarv

- Working with site operator (Podolsky Oil) to plan research well
 - Determined location and obtained permit
 - Discussing coring and logging program
- Examining data from adjacent wells to avoid redundant data collection

Greenfield site – data analysis

Motivation

Methodology

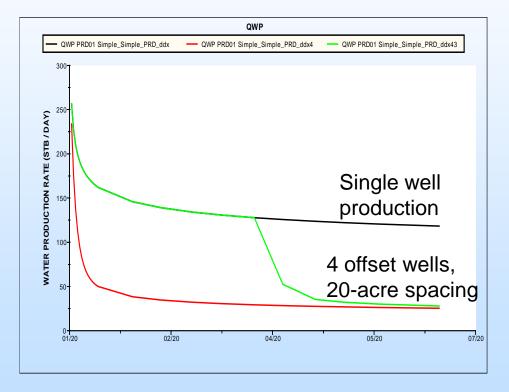
Accomplishments

Summary

-uture

- Working with site operator (Bi-Petro Inc.) to analyze existing well data
 - Reconciling six months of production data with reservoir properties derived from core and logs to identify what additional analyses are needed
- Correlating reservoir with nearby wildcat wells and oil fields to determine its extent and continuity

Greenfield site – injection design


Motivation

Methodology

Accomplishments

Summarv

- Developed simple homogenous model with typical properties
- Matching historical water production
 - Mimicking hydraulic fracture stimulation by doubling wellbore radius and using negative skin
 - Exploring possible causes for later drop in water production
- Modeling CO₂ injection to evaluate achievable rate, duration
 - Planning for up to 1,000 tons

Lessons learned

Motivation

Methodology

Accomplishments

Summary

- Projects that incorporate field laboratory research require extra attention to detail to:
 - Reconcile schedule (project vs. operator vs. weather)
 - Meet all stated objectives
 - Stay on budget

Project summary

Motivation

Methodoloav

Accomplishments

Summary

- Many formations in the Illinois Basin have oil indicators outside of productive areas and potential for ROZs; selections being made for ROZs to characterize
- Characterization of Carper Sandstone underway
- Preliminary modeling and simulation efforts ongoing to design CO₂ injection test at greenfield site
- Geologic characterization underway at brownfield site to prepare for drilling and modeling

Future work

Motivation

Methodology

Accomplishments

Summary

- Finalize selection of ROZs for characterization
- Begin characterization of selected ROZs
- Prepare for field laboratory research
 - Design injection test for greenfield site
 - Design coring and logging program for brownfield site

Synergy opportunities

- Methodologies for finding and characterizing ROZs in mature basins developed as part of this study are applicable in other basins
 - We look forward to comparing the results with findings from the Williston and Powder River Basins
- Siliciclastic ROZs in other basins are expected to have similar characteristics to Illinois Basin ROZs
 - Lessons learned from CO₂ flooding in siliciclastics in the Powder River Basin would be applicable to our ROZs

Acknowledgments

- Research herein was supported by US Department of Energy contract number DE-FE0031700
- Through a university grant program, IHS Petra, Geovariences Isatis, and Landmark Software were used for the geologic, geocellular, and reservoir modeling, respectively
- For project information, including reports and presentations, please visit:

http://www.isgs.illinois.edu/research/ERD/NCO2EOR

Appendix: Benefit to the program

- Goal: The Storage Infrastructure Technology Area research effort is carrying out regional characterization and small- and large-scale field projects to demonstrate that different storage types in various formation classes, distributed over different geographic regions, both onshore and offshore, have the capability to permanently store CO₂ and provide the basis for commercial-scale CO₂ projects. This, working together with the two other research areas, address significant technical challenges in order to meet program goals that support the scale-up and widespread deployment of CCS.
- Benefits Statement: This research will potentially demonstrate CO₂ -EOR and associated storage as an economically feasible option for small-middle size operators in the Illinois Basin and drive demand for CO₂ and investment in infrastructure.

Appendix: Project Overview Goals

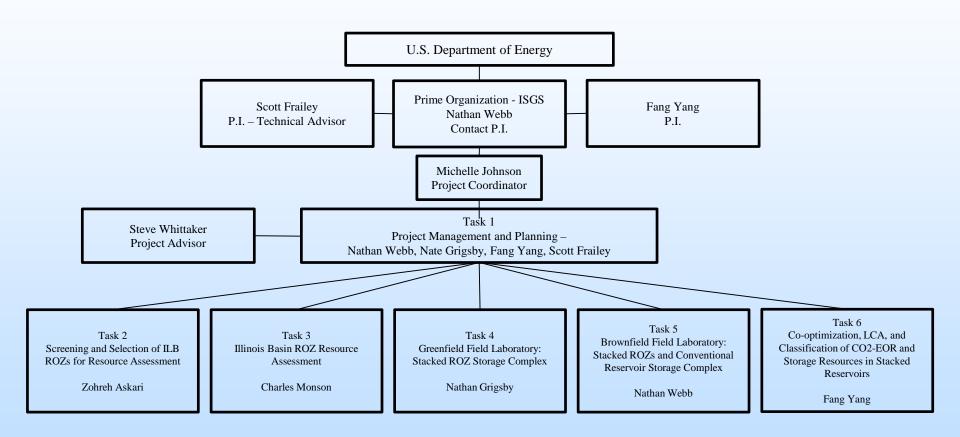
DOE Program

- ROZs:- formation, characterization, and associated storage in conjunction with EOR
- Co-optimizing CO₂-EOR with associated storage in storage complexes that have stacked reservoirs

Stacked ROZ Fairways in ILB Geo-Laboratory

- Identify and characterize primarily siliciclastic ROZs and quantify the CO₂-EOR and associated storage resource using data collected and test results from greenfield and brownfield field laboratory sites
- Design economic development strategies to co-optimize CO₂-EOR and associated storage in stacked storage complexes using reservoir simulations calibrated to field laboratory test results

Appendix: Project overview Objectives


DOE Program

 Develop specific subsurface engineering approaches leveraging CO₂ injection field tests and applied research and development, that address research needs critical for advancing CCS to commercial scale

Stacked ROZ Fairways in ILB Geo-Laboratory

- Screen for ROZs using analysis of empirical data and basin evolution modeling
- Characterize stacked brownfield/greenfield siliciclastic ROZs at field laboratory sites
- Conduct injection tests and collect and analyze core and logs at field laboratory sites
- Employ calibrated simulation models and life-cycle analyses for identifying development strategies

Appendix: Organization chart

Appendix: Gantt chart

Task Names	Bu	dget	Period		Budget Period 2 Budget Period 3																														
	2019								2020								2021										2022						###		
								Dec J				n Jul					c Jan Feb Mar Apr May Jun Jul												in Jul						
	Q1		Q2		Q3		Q4		Q5		Q	06		Q7		Q8		Q	9	(210		Q11		Q12		Q1	13		Q14		Q15		Q16	Q17
1.0 - Project Management and Planning																																			
Project Management																																			
Complete Project Management Plan	₩																																		
Kickoff Meeting	44																																		
Document Project Results																																			M
2.0 - Screening and Selection of ILB ROZs for Resource Assessment																																			
2.1 - Synthesize ILB data for basin-scale ROZ characterization																																			
2.2 - Analyze ILB and operator data at greenfield and brownfield field laboratory sites																																			
2.3 – Identify analogous basins																																			
2.4 – Selection of ILB geologic formations to study for basin resource assessment																													\neg						
3.0 – Illinois Basin ROZ Resource Assessment																													+						
3.1 – Characterize siliciclastic ROZ fairways																													+						
3.2 - Characterize overlying seals within the ROZ fairways																													+				-		
3.3 – Model oil source and migration into ROZ fairways																													+		_		+		
3.4 - Create maps of individual ROZ fairways																													+		-		+		
4.0 – Greenfield Field Laboratory: Stacked ROZ Storage Complex																													+		-		+		
4.1 - Develop conceptual geologic model of ROZs at the lab site																															-		+		
4.2 - Develop geocellular models based on the conceptual model																													+				+		
4.3 – Design and implementation of pressure transient test and an injection test																													+		_		+	+ +	
4.4 - Complete core, fluid, log, and pressure transient analyses								- "																					+		_		+		
4.5 - Calibrate reservoir models to field laboratory data													-																+		-		+		
4.6 - Develop injection strategies to maximize storage, EOR, and net present value																													+				-		
Finalize plan for data collection and testing at greenfield site													м																+		_		-		
5.0 – Brownfield Field Laboratory: Stacked ROZs and Conventional Reservoir Storage Complex																													+				-		
5.1 - Develop conceptual geologic model of stacked ROZs and conventional reservoirs at site																													+		_		+		
5.2 - Develop geocellular models based on the conceptual model																													+		-		+		
5.3 – Design coring, fluid sampling, pressure transient testing and logging program																													+		-		+		
5.4 - Complete core, fluid, log, and pressure transient analyses								0	///																				+		-		+		
5.5 - Calibrate reservoir models to the geocellular model using the field laboratory data								- 1																					+				+		
5.6 - Develop injection strategies to maximize storage, EOR, and net present value																													+				+	+ +	
Finalize plan for data collection and testing at brownfield site											м																		+		_		+	+ +	
Complete testing of fluid and core samples of target CO2 reservoiors from field laboratory sites																			M										+		_		+		
6.0 – Co-optimization, LCA, and Classification of CO ₂ -EOR and Storage Resources in Stacked Reser	voirs																																		
6.1 – Identify economic development strategies of greenfield stacked reservoirs																_			_														-		
6.2 – Identify economic development strategies of brownfield stacked reservoirs	_																		_						-						_		+	+ +	
6.3 – Perform LCA on brownfield and greenfield developments with potential ILB CO 2 sources																_			_						-										
6.4 – Estimate and classify CO 2 storage and CO 2-EOR for the ILB using storage efficiency																																			
6.5 – Complete fairway map of stacked ROZs, conventional reservoirs, and seals																																			
Complete strategies for co-optimization of CO2-EOR in stacked reservoirs																											м				-				
Complete sit degres for Co-optimization of Co2+Cox in statistic reservoirs					-		+			+									+	+					+				+			++	м	+-+	+
complete junitary maps		_		1	_	_		_	_		_	_				_	-		_	<u> </u>		-			_		_	_				<u> </u>	1 101	<u> </u>	

Appendix: Bibliography

• Nothing to report