A Data Mining Method for the Identification of New Physical Solvents

Wei Shi 1,2, David P. Hopkinson 1, Janice A. Steckel 1, Kevin Resnik 1,2, Megan K. Macala 1,2, Robert L. Thompson 1,2, S. Tiwari 1,2

1U. S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA, USA, 2AECOM, Pittsburgh, PA, USA

08/14/2018
Objectives

• Identify promising & commercially available physical solvents for CO$_2$ pre-combustion capture from computational screening

1. Solvents to be used around room temperature (25-80°C) and some important property requirements
 √ Hydrophobic
 √ High CO$_2$ loading & high CO$_2$/H$_2$ selectivity
 √ Low vapor pressure & low viscosity
 √ Non-foaming, non-harmful, non-environmental and non-safety issues
 √ Reasonable price

2. Solvents to be used at low temperatures (below 0°C)

• The best identified solvents will be experimentally tested at NETL and further modified, if needed.

• Perform Techno-Economic Analysis (TEA) & pilot plant testing
Outline

• Background
 – Search and screening
 – Required physical properties
 – Challenges

• Results
 – One (CASSH-1) very promising hydrophobic physical solvent has been identified from computational screening for CO₂ pre-combustion capture.

• Future work
Forward & Reverse Search

Material → Properties → Product → Market → Technology

Forward search

Material

Reverse search

Properties

Judgement → Specification

Machine Learning + Database

Experiment

(Search, characterization, testing)

Theory

(Quantum, MD & MC)

Search

(Open literature, database)

Correlation

(Group contribution, QSPR, trend)

NIST database for pure compounds (~23,000)
- Melting (T_m), boiling (T_b) temperatures, viscosity (μ), saturation vapor pressure (P^{sat}), surface tension (σ), density (molar volume)

Open literature to complement properties missing in NIST Database
- flash point, safety, health, environment
- Price

In-house computational database: quantum mechanics for gas – chemical function group interactions
- CO$_2$, CH$_4$, H$_2$, H$_2$O, H$_2$S, COS, SO$_2$, O$_2$, N$_2$, etc.

In-house machine learning and Monte Carlo molecular simulation
- Chief criteria: CO$_2$ solubility, CO$_2$/H$_2$ solubility selectivity, heat of absorption, H$_2$O solubility

In-house simulation: Molecular Dynamics
- Surface tension, heat capacity, viscosity, CO$_2$ diffusivity, density, vapor pressure, therm. conduct.

Experimental testing & TEA analysis

Integrated Computational Flow Chart

- 23,000 compounds, such as T_m, μ
- ~100-1000 compounds, such as T_m, μ
- <100 compounds
- 30-40 compounds
- best

Integrated Computational Flow Chart

Experimental testing & TEA analysis
Why Do We Care About Hydrophobicity?

• H_2O competes for CO_2 interaction with solvent.
• Presence of water significantly & unfavorably decreases both CO_2 loading and CO_2/H_2 selectivity.
Developing a Hydrophobic CO$_2$ Capture Solvent Is Challenging

• Minimizing water absorption by adding functional groups could decrease CO$_2$ absorption
Why Low Solvent Viscosity is Desirable?

- Low viscosity increases CO₂ diffusivity → faster absorption
 - decrease capital cost

\[D_{\text{CO}_2} = 2.6482 \times 10^{-9} / \mu_{\text{solv}}^{0.61776} \]

\[R = -0.96 \]

298 K
Compromise Between Solvent Viscosity and Vapor Pressure

- 53 solvents exhibit both smaller vapor pressure and smaller viscosity than Selexol.
• ~600 compounds were found in NIST database with

\[T_m < 30 \, ^\circ\text{C} \, \& \, T_b > 260 \, ^\circ\text{C} \]
In-house Computation Database: Chemical Functional Group Interactions with CO$_2$

202 chemical functional groups1

- PHO$_4$, C=N, etc. interact most strongly with CO$_2$ (> 15 kJ/mol)
- -O-, COO$^-$ groups interact strongly with CO$_2$ (~ 10-12 kJ/mol)
- -CH, -CH$_2$, -CH$_3$ interact most weakly with CO$_2$ (< 1 kJ/mol)

Experimental Validation of Simulation

- **CO₂ solubility values agree (14.2% difference)**
 - Consistent trends

PDMS: polydimethylsiloxane [1]
TBP: Tributyl phosphate [3]
PEGS: NETL PEG-Siloxane-1 [2]
PC: propylene carbonate [3]
NMP: N-Methyl-2-pyrrolidone [3]

- **CO₂/H₂ selectivity values agree**
 - (17.3% difference)
 - Same trends

CAS 143-24-8: Selexol surrogate

Simulated CO$_2$ Solubility Values in ~30 Solvents: Identify One of the Best

- One of the best solvents, CASSH-1, was identified from the computational screening.
- Similar CO$_2$ solubility trend
 - Sim.: CASSH-1 > Selexol > PEG-PDMS-3 > decane > H$_2$O
 - Exp.: Selexol ~ CASSH-1 ~> PEG-PDMS-3 > decane > H$_2$O

298 K
Simulated High CO$_2$/H_2 Solubility Selectivity in CASSH-1

• CASSH-1 exhibits high CO$_2$/H_2 selectivity
 – needs experimental validation
CASSH-1 is non-foaming

Hand shaken for 1 min., then photographed immediately

Hand shaken for 1 min., then photographed after 1 min.
Physical Properties at 298 K

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Selexol</th>
<th>PEG-PDMS-3</th>
<th>CASSH-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity (cP)</td>
<td>5.8</td>
<td>12.2</td>
<td>5.1</td>
</tr>
<tr>
<td>Density (g/cm³)</td>
<td>1.030</td>
<td>0.9847</td>
<td>0.960</td>
</tr>
<tr>
<td>Molecular weight (g/mol)</td>
<td>280</td>
<td>620</td>
<td>260</td>
</tr>
<tr>
<td>Vapor pressure (mmHg)</td>
<td>7.3×10⁻⁴</td>
<td>small</td>
<td>1/100 of Selexol</td>
</tr>
<tr>
<td>Freezing point (°C)</td>
<td>-28</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Normal boiling point (°C)</td>
<td>275</td>
<td>high</td>
<td>300</td>
</tr>
<tr>
<td>Hydrophobicity</td>
<td>Very hydrophilic</td>
<td>hydrophobic</td>
<td>Very hydrophobic</td>
</tr>
<tr>
<td>Foaming</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Safety, health, environment</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Future Work: TEA Analysis for ~30 Solvents

- CO$_2$ solubility, CO$_2$/H$_2$ selectivity at T, P
- Viscosity, heat capacity, vapor pressure, density, critical T & P, price
Extending the Same Approach to Polymer Screening for CO$_2$ Capture Membrane (New Project)

- **Polymer database**
 - Over 800 organic polymers involving 9 species (C, H, O, N, S, F, Cl, Br, I) \[^{[1]}\]
 - Experimental database development
 - $\sqrt{\text{CO}_2}$, CH$_4$, H$_2$O, N$_2$, O$_2$ and H$_2$ permeability, solubility, and diffusivity in polymers
 - $\sqrt{\text{Glass transition temperature, melting point, mechanic properties}}$
 - $\sqrt{\text{Data for } \sim 50 \text{ polymers collected so far}}$
 - Computational polymer database development
 - $\sqrt{\text{CO}_2}$ interactions with dimer built from monomer functional groups
 - $\sqrt{\text{Free volume fraction, gas-functional group interaction, and functionality availability}}$

- **Polymer molecular simulation tools to calculate permeability**
 - Tools development to generate polymer initial configurations
 - In-house simulation tools ready for polymer simulation

Conclusions

• Integrated automatic computational approach developed

• In-house computational database built

• 23,000 compounds from NIST database screened

• One (CASSH-1) very promising commercially available hydrophobic solvent identified from screening for CO$_2$ pre-combustion capture
Acknowledgements

• NETL Internal Collaborators
 —Robert Thompson, Megan Macala, Jeffrey Culp, Hong Lei, Surendar Venna
 —Surya Tiwari, Samir Budhathoki, Jan Steckel, Dan Sorescu
 —Nicholas Siefert, Kevin Resnik
 —David Hopkinson
 —CO₂ Capture team
 —Computational materials group
 —HPCEE super computer cluster
 —Michael Matuszewski, Bryan Morreale

• NETL external contacts
 —Rafiqul Gani @ Technical University of Denmark, Kevin Joback @ molecularknowledge.com
 —Edward Maginn @ University of Notre Dame
 —Karl Johnson and Badie Morsi @ University of Pittsburgh

This technical effort was performed in support of the National Energy Technology Laboratory’s ongoing research under the RES contract DE-FE0004000.

This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with AECOM. Neither the United States Government nor any agency thereof, nor any of their employees, nor AECOM, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.