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• Identify promising & commercially available physical 
solvents for CO2 pre-combustion capture from computational 
screening

1. Solvents to be used around room temperature (25-80C) and some 
important property requirements
√Hydrophobic

√High CO2 loading  & high CO2/H2 selectivity

√ Low vapor pressure & low viscosity

√Non-foaming, non-harmful, non-environmental and non-safety issues

√Reasonable price

2. Solvents to be used at low temperatures (below 0C)

•The best identified solvents will be experimentally tested at 
NETL and further modified, if  needed.

•Perform Techno-Economic Analysis (TEA) & pilot plant 
testing

Objectives 
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•Background
Search and screening
Required physical properties
Challenges

•Results
One (CASSH-1) very promising hydrophobic 
physical solvent has been identified  from 
computational screening for CO2

pre-combustion capture.

•Future work

Outline
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Material Properties Product

Technology Market

[1] Wei, J. Product Engineering: Molecular Structure and Properties, 2007, 

Oxford University Press

Database

Machine
Learning

+
Theory

(Quantum, MD & MC)

Experiment
(Synthesis, 

characterization, 
testing)

Search
(Open literature, 

database)

Correlation
(Group contribution, 

QSPR, trend)

Forward & Reverse Search
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NIST database for pure compounds (~23,000)
• Melting (Tm), boiling (Tb) temperatures, viscosity 

(), saturation vapor pressure (Psat), surface 
tension (), density (molar volume)

Open literature to complement properties 
missing in NIST Database
• flash point, safety, health, environment
• Price

In-house computational database: quantum 
mechanics for gas – chemical function group  
interactions
• CO2, CH4, H2, H2O, H2S, COS, SO2, O2, N2, etc.

In-house machine learning and Monte Carlo 
molecular simulation
• Chief criteria: CO2 solubility, CO2/H2 solubility 

selectivity, heat of absorption, H2O solubility 

In-house simulation: Molecular Dynamics
• Surface tension, heat capacity, viscosity, CO2

diffusivity, density, vapor pressure, therm. conduct.

30-40

best

<100 

Experimental testing & TEA analysis 5

Integrated Computational Flow Chart

~ 100-1000 
compounds, such 

as Tm, 

23,000
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1.93 Å

2.94 Å

H2O-solvent: -20.9 kJ/mol

CO2-solvent: -12.8 kJ/mol 298 K

Why Do We Care About Hydrophobicity?  

•H2O competes for CO2 interaction with solvent.

•Presence of  water significantly & unfavorably 
decreases both CO2 loading and CO2/H2 selectivity.  

Selexol surrogate
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Developing a Hydrophobic CO2 Capture
Solvent Is Challenging

•Minimizing water absorption by adding functional 
groups could decrease CO2 absorption
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Why Low Solvent Viscosity is Desirable?

•Low viscosity increases CO2 diffusivity  faster absorption

 decrease capital cost

R=-0.96

298 K
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Compromise Between Solvent Viscosity 
and Vapor Pressure

•53 solvents exhibit both smaller vapor pressure and 
smaller viscosity than Selexol

298 K

S

Desired  Region
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•~600 compounds were found in NIST database with  

Tm < 30 C & Tb > 260 C

23,000→600 NIST Database Search
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In-house Computation Database: Chemical 
Functional Group Interactions with CO2

202 chemical functional groups[1]

• PHO4, C=N, etc. interact most strongly with CO2 (> 15 kJ/mol)

• -O-, COO- groups interact strongly with CO2 (~ 10-12 kJ/mol) 

• -CH, -CH2, -CH3 interact most weakly with CO2 (< 1 kJ/mol)

[1] Marrero, J.; Gani, R. Fluid Phase 

Equilib. 2001, 183
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Experimental Validation of Simulation

• CO2 solubility values 
agree (14.2% difference)

― Consistent trends

• CO2/H2 selectivity 
values agree 

(17.3% difference)
― Same trends

[1] Shi, W. et al., J. Phys. Chem. C 2015, 19253

[2] Shi, W. et al., J. Phys. Chem. C 2016, 20158

[3] Burr, B. et al. Hydrocarbon Processing 2009, 43

PDMS: polydimethylsiloxane [1]

TBP: Tributyl phosphate [3]

PEGS: NETL PEG-Siloxane-1 [2]

PC: propylene carbonate [3]

NMP: N-Methyl-2-pyrrolidone [3]

298 K

CAS 143-24-8: Selexol surrogate

298 K
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Simulated CO2 Solubility Values in ~30 
Solvents: Identify One of the Best

• One of  the best solvents, CASSH-1, was identified from the 
computational screening.

• Similar CO2 solubility trend
―Sim.: CASSH-1 > Selexol > PEG-PDMS-3 > decane > H2O
―Exp.: Selexol ~ CASSH-1 ~> PEG-PDMS-3 > decane  > H2O 

298 K
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Simulated High CO2/H2

Solubility Selectivity in CASSH-1

•CASSH-1 exhibits high CO2/H2 selectivity

needs experimental validation
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CASSH-1 is non-foaming

Hand shaken for 1 min., 

then photographed immediately

PEG-PDMS-1 CASSH-1

PEG-PDMS-1 CASSH-1 Hand shaken for 1 min., 

then photographed after 1 min. 
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Physical Properties at 298 K

Solvent Selexol PEG-PDMS-3 CASSH-1

Viscosity  (cP) 5.8 12.2 5.1

Density (g/cm3) 1.030 0.9847 0.960

Molecular weight (g/mol) 280 620 260

Vapor pressure (mmHg) 7.310-4 small 1/100 of Selexol

Freezing point (C) -28 0

Normal boiling point (C) 275 high 300

Hydrophobicity Very 
hydrophilic

hydrophobic Very  
hydrophobic

Foaming No No No

Safety, health, 
environment 

No No No
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Future Work: TEA Analysis 
for ~30 Solvents

CO2 solubility, 
CO2/H2 selectivity at T, P
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• Polymer database
─ Over 800 organic polymers involving 9 species (C, H, O, N, S, F, Cl, Br, I) [1]

─ Experimental database  development 

√ CO2, CH4, H2O, N2, O2 and H2 permeability,  solubility, and diffusivity in polymers

√Glass transition temperature, melting point, mechanic properties

√Data for ~50 polymers collected so far

─ Computational polymer database development

√ CO2 interactions with dimer built from monomer functional groups

√ Free volume fraction, gas-functional group interaction, and functionality availability

• Polymer molecular simulation tools to calculate permeability
─ Tools development to generate polymer initial configurations

─ In-house simulation tools ready for polymer simulation

Extending the Same Approach to 
Polymer Screening for CO2 Capture 
Membrane (New Project)

[1] Kim C.; et al. J. Phys. Chem. C 2018, DOI: 10.1021/acs.jpcc.8b02913
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Conclusions

• Integrated automatic computational 

approach developed

• In-house computational database built

•23,000 compounds from NIST

database screened

•One (CASSH-1)  very promising 

commercially available hydrophobic 

solvent identified from screening for 

CO2 pre-combustion capture
BestBest 
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