

Harnessing Algal Biomass to Contain Power Plant Emissions

Wei Liao

Anaerobic Digestion Research and Education Center Biosystems and Agricultural Engineering Michigan State University

Addressing the Nation's Energy Needs Through Technology Innovation – 2019 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting

August 29, 2019

Dr. Yan (Susie) Liu

Biosystems and Agricultural Engineering, Michigan State University Responsible for algal cultivation

Dr. Mitch Smith

Chemistry, Michigan State University Responsible for catalysis of polymer synthesis

Dr. Angela Wilson

Chemistry, Michigan State University Responsible for formulation of amino acid based absorbents

Dr. Wei Liao

Biosystems and Agricultural Engineering, Michigan State University Responsible for system integration, TEA and LCA

Mr. Bill Clary, Mr. Dave Pavlik

PHYCO₂ LLC

Responsible for the reactor modification and pilot operation

Mr. Nate Verhanovitz

The T.B. Simon Power Plant, Michigan State University

Responsible for the connection between the pilot unit and the power plant operation

- Current challenges of biological CO₂ capture from power industry
- Our strategy The combined biological and chemical solution
- The pilot-scale photobioreactor algal cultivation
- The algal amino acid salt solution of CO₂ capture
- Mass and energy balance of the combined solution

100 MW T.B. Simon Power Plant, MSU

160 MW Erickson Power Plant, Lansing, MI

Algal cultivation on flue gas and wastewater from the power plant

- Algal biomass yield and algal biomass productivity
 - Very good biomass yield (considering photosynthesis)
 - Unmatched biomass productivity (considering the rate of CO₂ emission)
- Land and water demands for large algal cultivation systems required to completely capture CO₂ from a commercial coal-fired power plant
 - Erickson Power Plant (150 MW): ~3,000 metric ton CO₂ per day requires ~150,000,000 m² area for the open pond reactor and ~45,000,000 m³ volume for the photobioreactor (based on the current algae biomass productivity of 20 g/m²/day)
- Stability and robustness of algal strains for long-term cultivation on flue gas

Large footprint of algal cultivation From:

http://www.cyanotech.com/company/fa cility.html

Contaminated algal cultivation From: https://www.youtube.com/watch?v= H4DQTeNamPE

Synergistically integrating biological and chemical processes to efficiently capture CO_2 from flue gas and completely utilize the algal biomass for value-added chemical and fuel production

Objectives:

- 1. The selected algal strain to maximize biomass accumulation from the coal-fired flue gas
- 2. A cascade biomass utilization to produce **amino acid absorbents**, polyurethanes, biodiesel, and methane
- 3. Techno-economic analysis (TEA) and life cycle assessment (LCA)

*: Solid black lines are the mass flow. Dashed blue lines are the energy flow. The red frame is the system that will be studied by this project. a. T.B. Simon power plant; b. Flue gas pumping unit; c. Photobioreactor; d. Algae growing in the reactor; e. Centrifuge; f. Dryer

A. A robust algal strain from the Great Lakes region

• A robust alga, *Chlorella sorokiniana* MSU, has been selected from the Great Lake region.

Changes of the algal assemblage during 5 months continuous culture

Algal community assemblages before (a) and after (b) cultured in AD effluent for 5 months, and (c) SEM picture of the pure *Chlorella sorokiniana* MSU

Effects of different wavelengths on algae

Flask culture (250 ml)

Bench scale photobioreactor (2 L)

B. Pilot operation

- This task optimizes and validates continuous algae cultivation using the pilot photobioreactors
- Pilot experiments
 - The algal strain:
 - The selected Chlorella sorokiniana MSU with several bacteria
 - Culture system preparation:
 - The **boiler water** (12 mg/L TP) is the water source for the culture.
 - The flue gas from the T.B. Simon power plant is the CO₂ source.
 - Na₂SO₃ and NH₄NO₃ are used to mimic SO₂ and NO₂ in the flue gas.
 - Operation of the algal cultivation:
 - Flue gas flow rate: 120 L/1000 L solution/min
 - The reactor volume: 100 L
 - Harvesting frequency: 12 hours and 24 hours
 - Harvesting amount: 30 L/harvesting, 50 L/harvesting, 60 L/harvesting, 70 L/harvesting
 - Water recirculation: 50 L/harvesting and recirculation

PHYCO2-MSU pilot algal cultivation facility at the power plant

100 L pilot unit

The culture started

The normal growth

B. Pilot operation

Biomass concentration under different culture conditions (from March 2018 to June, 2019)

Cuture time (day)

B. Pilot operation

Nitrogen consumption (from March 2018 to June 2019)

Currure time (day) Phosphorus consumption (from March 2018 to June 2019)

pH (from March 2018 to June 2019) ^{a, b}

a: A strategy using ammonia and nitrate to balance pH has been developed applied to control pH without acid and alkali usagesb: NxO in the flue gas can be beneficial for the pH control.

Cq ratio of alga and bacteria (from March 2018 to June 2019) ^a

B. Pilot pperation

Biomass concentration and productivity

Biomass concentration

- 50 L harvesting twice per day had the highest (P<0.05) biomass productivity of 1.45 g/L/day.
- 50 L harvesting with SO₂ supplement had the highest (P<0.05) biomass concentration of 1.36 g/L.
- 50 L harvesting with SO₂ and water cycle had the biomass productivity and biomass concentration of 0.36 g/L/day and 0.72 g/L.

C. Harvested biomass from the pilot operation

Characteristics of algal biomass from the pilot operation

Elements

Elements	value
Carbon (%, dry biomass)	48.2
Nitrogen (%, dry biomass)	9.1
Sulfur (%, dry biomass)	0.5

Components

Components	value
Crude proteins (% dry biomass)	56.8
Lipids (% dry biomass)	6.8
Carbohydrates (% dry biomass)	30.4
Ash (% dry biomass)	6.0

Amino acids

Amino acids	Content (Mole %)
histidine	1.63
isoleucine	4.24
leucine	8.52
lysine	10.32
methionine	3.90
phenylalanine	3.58
threonine	3.62
tryptophan	_
valine	7.96
arginine	4.88
cysteine	1.43
glycine	11.04
proline	5.66
tyrosine	1.00
alanine	13.35
aspartic Acid	5.79
glutamic Acid	10.51
serine	2.53

A. Flowchart

2 L ball mill unit for mechanical alkali protein extraction

2 L Parr reactor for protein hydrolysis

Bench-scale CO₂ desorption unit

Bench-scale CO_2 absorption unit

4. The algal amino acid salt solution of CO₂ capture

B. Protein extraction and amino acid CO₂ absorption results

Mechano-chemical protein extraction process*

Samp le No.	Ball material	Ball:Biomas s mass ratio	Reaction time (min)	КОН	Protein extraction efficiency (%)	Amino acid conversion efficiency (%)
1	Zirconia	4:1	60	КОН	87	10
2	Zirconia	4:1	30	КОН	41	8
7	Agate	4:1	30	КОН	81	9
9	Agate	2:1	30	КОН	17	7

*: The effects of selected ball/biomass ratio, reaction time on protein extraction efficiency of ball mill treated algal biomass. The milled slurry was treated under 130C for 2 hours before using for absorption.

- Both agate and zirconia had high protein extraction efficiency.
- Amino acid conversion efficiency is still low.
- Major amino acids from algal biomass can efficiently absorb CO₂ and release them under an elevated temperature.

Single amino acid salt solution of CO₂ absorption and desorption*

Solutions	Total carbon of original solution (mol carbon/L)	Total carbon after absorption (mol carbon/L)	Total carbon after desorption (mol carbon/L)	Total carbon captured (mol carbon/mol amino acid salt)
Glycine salt	1.82	2.69	1.68	1.01
Alanine salt	2.37	4	2.73	1.27
Lysine salt	5.08	5.75	5.14	0.61
Proline salt	4.34	5.35	4.51	0.84
KOH (control)	0	0.43	0.28	0.15

*: the amino acid solution used for this test is 1 M.

Chemical reactions of amino acid salt CO2 absorption

Amine formation:
$$OOC-R-NH_3^+ + KOH \rightarrow K+ + OOC-R-NH_2 + H_2O$$

amino acid amine

Carbamate formation: $CO_2 + 2^{\circ}OOC-R-NH_2 \leftrightarrow ^{\circ}OOC-R-NH-COO^{\circ} + ^{\circ}OOC-R-NH_3^{+}$ carbamate

Carbamate hydrolysis: $"OOC-R-NH-COO" + H_2O \leftrightarrow "OOC-R-NH_2 + HCO_3"$ bicarbonate

Biocarbonate formation: CO_2 + "OOC-R-NH₂ + H₂O \leftrightarrow "OOC-R-NH₃⁺+ HCO₃"

PHYCO₂

B. Amino acid salt CO₂ absorption

Kinetics of absorption and desorption of single amino acids

B. Amino acid salt CO₂ absorption

NMR results of absorption and desorption of single amino acids

Glycine

Alanine

Proline

🔗 PHYCO₂

B. Amino acid salt CO₂ absorption

- Algal amino acid salt solution shows much better CO₂ absorption capacity than single amino acid salt solution.
- Increasing amino acid conversion is a critical step for producing high-efficiency algal amino acid salt solution.
- Repeatability of algal amino acid salt solution is very good and still under investigation.

PHYCO₂

A. Preliminary mass balance analysis

- The mass balance analysis is based on a system sized for a 150 MW coal-fired power plant.
- The power plant burns subbituminous coal and generates 1.2 million metric tons of CO_2 , 6,000 metric tons of N_2O , and 3,000 metric tons of SO_2 per year.

a. The repeatability of the algal amino acid salt solution is still under investigation. The current calculation is based on single amino acid salt solution.

PHYCO₂

A. Preliminary mass balance analysis

- The mass balance analysis is based on a system sized for a 150 MW coal-fired power plant.
- The power plant burns subbituminous coal and generates 1.2 million metric tons of CO_2 , 6,000 metric tons of N_2O , and 3,000 metric tons of SO_2 per year.

a. The repeatability of the algal amino acid salt solution is still under investigation. The current calculation is based on single amino acid salt solution.

B. Preliminary energy balance analysis

- The energy balance analysis is based on the previous mass balance.
- The 150 megawatts coal-fired power plant generates 14,416,457 GJ/year for both electricity and heat.
- The studied system consumes 19% of the total energy generated from the power plant to near-completely capture CO₂ in the flue gas, compared to 35% of MEA process.

	Energy value (GJ/year)				
System components	The studied system ^b	The amino acid salt process ^c	MEA process ^d		
Chemical production					
Energy input	-2,184	-	-		
Energy output	2,920	-	-		
CO ₂ capture					
Energy input	-2,759,055	-2,759,055	-5,040,044		
Energy output	-	-	-		
Total energy input	-2,761,389	-	-5,040,044		
Total energy output	1,920	-	-		
Net energy	-2,759,469	-2,759,055	-5,040,044		

- a. Data used in the calculation are from the pilot scale algal cultivation and previous lab-scale utilization experiments. The energy input is assigned as negative. The energy out is assigned as positive.
- b. The studied system consists of algae photobioreactor cultivation, cascade biomass utilization, and CO₂ capture.
- c. The single amino acid salt process only includes amino acid salt absorption.
- d. The MEA process only includes MEA CO_2 capture.

- Long-term culture stability (~17 months and counting) of the selected algal strains was achieved using flue gas as the carbon source.
- A pH control strategy was achieved to enhance algal growth.
- Algal biomass productivity reaches 0.2-1.4 g/L/day at a biomass concentration of 0.6-1.4 g/L from the pilot operation.
- Algal amino acid salt solution shows better performance (0.88 g CO₂/g algal amino acids) on CO₂ capture than single amino acid solutions (average 0.65 g CO₂/g amino acid).
- The combined biological and chemical flue gas utilization leads to **a technically sound system** to efficiently capture CO₂ in the flue gas.

- A cascade algal biomass conversion process
 - CO₂ absorbent
 - polyurethane
 - Diesel
 - Methane
- Comprehensive techno-economic analysis and life cycle assessment

• NETL FE0030977

Erickson Power Plant

