Novel CO₂-Selective Membranes for CO₂ Capture from <1% CO₂ Sources DE-FE0026919

Winston Ho / Yang Han

William G. Lowrie Department of Chemical & Biomolecular Engineering Department of Materials Science and Engineering The Ohio State University

2019 NETL Technologies Integrated Review Meeting Pittsburgh, PA, August 27, 2019

Project Objective

- Develop a novel cost-effective membrane and design of membrane modules that capture CO₂ from <1% CO₂ sources
 - 90% CO₂ Capture
 - 95% CO₂ Purity

3-Budget Period Project

• BP1: 03/01/2016 - 02/28/2017

- Conduct laboratory-scale membrane synthesis, characterization and transport performance studies
- Carry out high-level preliminary techno-economic analysis
- BP2: 03/01/2017 02/28/2018
 - Continue laboratory-scale membrane synthesis, characterization and transport performance studies
 - Fabricate larger size membrane (~ 14" by > 20')
 - Fabricate, evaluate and down-select from plate-and-frame and spiral-wound membrane modules
 - Update techno-economic analysis performed in BP 1
- BP3: 03/01/2018 08/31/2019
 - Fabricate 3 pilot membrane modules
 - Test modules with <1% CO₂ simulated gas mixture
 - Update techno-economic analysis
 - Integrated program with fundamental studies, applied research, synthesis, characterization and transport studies, and high-level techno-economic analysis

Funding and Performance Dates

- Total Budget: 03/01/2016 08/31/2019
 DOE: \$1,248,278; OSU: \$372,864 (23% cost share)
 - BP1: 03/01/2016 02/28/2017
 DOE: \$407,616; OSU: \$121,756
 - BP2: 03/01/2017 02/28/2018
 DOE: \$419,628; OSU: \$125,344
 - BP3: 03/01/2018 08/31/2019
 DOE: \$421,034; OSU: \$125,764

Process Proposed for CO₂ Capture from <1% CO₂ Sources

 Proposed membrane process does not require cryogenic distillation (compared to competition)

Location of Proposed Technology in Coal-fired Power Plant

Selective Amine Polymer Layer on Polymer Support

- Selective Amine Polymer Layer
 - Facilitated transport of CO_2 via reaction with amine

 $CO_2 + R-NH_2 + H_2O \implies R-NH_3^+ + HCO_3^-$

- Facilitated transport = flux augmentation via reaction
- High CO₂ permeance and CO₂/N₂ selectivity

BP1 Accomplishments

- Improved 14"-wide PES Polymer Support Fabricated with Continuous Machine
 – 13,900 GPU CO₂ permeance obtained
- Composite Membrane Synthesized in Lab
 - Elucidated carrier saturation phenomenon
 - 980 GPU with 170 CO₂/N₂ selectivity obtained at 57°C from lab test using 1% CO₂ concentration feed gas
 + 780 GPU with 150 CO₂/N₂ selectivity obtained using 20% CO₂ feed
- High-Level Techno-economic Analysis Showed Capture Cost of ~\$305/tonne CO₂ (in 2011 \$)
 - ~22% increase in COE

BP2 Accomplishments

- Improved 14"-wide PES Support Fabricated with Continuous Machine (22,500 GPU)
- Pilot Composite Membranes Synthesized – Membrane scaled up to 14" by roll-to-roll successfully
- Plate-and-Frame and Spiral-Wound (SW) Modules Fabricated
 - Both showed ~1,500 GPU with ~220 selectivity at 57°C
 + Similar results to scale-up flat-sheet membrane
 - Both gave similar and acceptable pressure drop results
 - Down-selected to SW module for ease of manufacture
- Good Module Stability (3 ppm SO₂ & 7% O₂): 1,700 h
- High-Level Techno-economic Analysis Showed Capture Cost of \$268/tonne CO₂ (in 2011 \$) – ~19% increase in COE

BP3 Accomplishments

- Optimized Composite Membranes Synthesized
 - Membrane scaled up to 14" by roll-to-roll successfully
 - ~2,300 GPU with 180 CO₂/N₂ selectivity obtained at 67°C using 1% CO₂ conc. feed gas similar to lab-scale results
 ~1,710 GPU & 145 Selectivity for 20% CO₂ conc. feed gas
- 3-m² Spiral-Wound (SW) Modules Fabricated
 - ~2,300 GPU with ~180 selectivity at 67°C using 1% CO₂
 - + ~1,700 GPU & 140 Selectivity for 20% CO_2 conc. feed gas
 - + Similar results to scale-up flat-sheet membrane
 - + 1900-h good module stability obtained (3 ppm SO₂&7%O₂)
 - All gave similar and acceptable pressure drop results
- SW Module Testing at NCCC (Related effort conducted under a separate ODSA-funded project)
 - Module showed ~1,450 GPU with ~180 selectivity at 67°C
 + Similar results to modules using simulated flue gas
 - 500-hour good module stability obtained
 - Similar and acceptable pressure drop results obtained

Successful Continuous Fabrication of Affordable PES Support

Ave. pore size = 38.6 nm, Porosity = 18.0%
Optimal pore size identified to reduce penetration during coating
Hydrophilic additives improved adhesion & open porous morphology 11

Scale-up of PES Support and Composite Membrane

Continuous Membrane Fabrication Machine at OSU

Composite Membrane Synthesized Selective Amine Polymer Layer on PES Support

Selective layer = 120 nm

Significant Membrane Performance Improvement Achieved

Spiral-Wound Membrane Module Fabricated

Element Rolling Machine

Spiral-Wound Membrane Element

Membrane Module Feed Outlet

Vacuum Permeate

Feed Inlet

Successful Scale-up of SW Modules

Good SW Module Stability Obtained

High-Level Techno-Economic Calculations

• Basis: Membrane Results at 67°C

- 2,307 GPU & 180 Selectivity for 1% CO₂ concentration feed gas
- 1,713 GPU & 145 Selectivity for 20% CO₂ conc. feed gas
- Include Membrane Module Installation Cost and 20% Process Contingency
- In 2011 dollar: NETL Case 12 of Updated Costs (June 2011 Basis) for Selected Bituminous Baseline Cases

Calculated Cost Results

- 32.3 tonne/h of CO₂ captured from 1% CO₂ source
- \$81 million bare equipment cost
 Membrane 18%, blowers and vacuum pumps 76%, others 6%
- 1.45 ¢/kWh (1.01 ¢/kWh capital cost, 0.21 ¢/kWh fixed cost, 0.20 ¢/kWh variable cost, and 0.03 ¢/kWh T&S cost)
 COE = 8.09 ¢/kWh for 550 MW supercritical pulverized coal power plant
- \$247/tonne capture cost (\$14.5/MWh × 550 MW/(32.3 tonne/h))
- 17.9% Increase in COE (1.45/8.09 = 17.9%)

Acknowledgments

David Lang & José Figueroa, DOE/NETL Matt Usher & Dean Bell, AEP Eng. Services Great efforts and strong inputs

Tony Wu & Bob Lambrecht, NCCC Team Excellent analytical and mechanical supports

Financial Supports

DOE/NETL

DE-FE0026919

- Also serving as cost share to ODSA project

ODSA (Ohio Development Services Agency) OER-CDO-D-15-09

- AEP cost sharing
- NCCC membrane module testing