Chemical kinetic modeling development and validation experiments for direct fired sCO2 combustor

PI: Subith Vasu¹

Co-Pls: Jayanta Kapat¹, Artem Masunov¹, Scott Martin², Ron Hanson³ ¹University of Central Florida, Orlando, FL ²Embry-Riddle University, Daytona Beach, FL ³ Stanford University, Stanford, CA

DE-FE0025260

PM: Dr. Seth Lawson Duration 3 years: 10/1/2015-9/30/2018 UTSR Meeting, Daytona Beach, FL, 11/1/2018 Distribution A: Approved for public release

Contact: subith@ucf.edu

ing to the energy needs of society

Direct-fired sCO₂ combustion

CO₂ is directly-fired based on the Brayton Cycle Concept

Typically highest pressures ranges from 200 - 300 bar at high pressures to just above the critical point

Figure adapted from Strakey, 2014, sCO2 symposium

ERing to the energy needs of society

Ideal Oxy-fuel combustion $CH_4 + O_2 + CO_2 \rightarrow CO_2 + H_2O$

Figure adapted from Delimont, 2016, sCO2 symposium

Direct or "Open" Simple Cycle

Knowledge gaps

- <u>Existing</u> state-of-the-art, such as GRI-3.0 Mechanism, has only been validated for pressures up to 10 atm
- Mechanisms have not been developed for CO₂ diluted mixtures
- Updated/new mechanism will allow for accurate combustor modeling with multistep combustion using a validated mechanism
- Current CFD combustion models do not consider non-ideal effects
- Thermodynamics and kinetics are currently unknown!!
- Fundamental work can shed light into this challenge

Effects of Increasing Pressure. Equilibrium calculation for $CH_4/O_2/CO_2$ at $\phi = 1$. Figure adapted from Strakey, 2014, sCO2 symposium

State-of-the-knowledge

State-of-the-art models differ in their predictions even at atmospheric pressure with high CO₂

- GRI 3.0 is still a widely used mechanism created 15 years ago
- Aramco Mech 2.0 is a recent well-validated mechanism

ATER ing to the energy needs of society

Combustion chemistry snapshot

ATERing to the energy needs of society

Combustion chemistry/kinetics are different at high pressure

CF

ATER ing to the energy needs of society

Project/Task Summary

Task 1: Project Management

Tasks 2&3: Acquire kinetics and ignition data in highly CO_2 diluted mixtures with shock tube experiments

Task 4: Refine and validate a chemical kinetic mechanism for Supercritical Carbon Dioxide (sCO_2) Mixtures

Task 5: Develop a CFD Code that utilizes mechanism for sCO_2 combustors

Overall Progress from this project in 3 years Oxy-Combustion/SCO₂

20 Journal Papers

- 3 in J. Engineering for Gas Turbines and Power (ASME)
- 4 in J. Energy Resources Technology (ASME)
- 2 in Combustion and Flame
- 7 in J. Physical Chemistry A
- 2 in Energy & Fuels
- 1 Int J Chemical Kinetics
- 1 Proc. of Combust. Inst.
- > 30 conference papers at ASME Turbo Expo, sCO2 symposium, AIAA Meetings, Combustion Institute Meetings
 - 4 additional journal papers currently in review

Sample Experiments Results

Shock tube operation: Pre-shock filling

- Shock tubes are ideal for studying combustion chemistry
- Step change in T, P and well-defined time zero
- Simple fuel loading
- Accurate mixtures and pre-shock conditions

CATER ing to the energy needs of society

Laser absorption spectroscopy

S(T): line strength, $\Phi(T,P,X)$: line shape

Ignition Results: Without CO₂

- Comparison of measured and simulated methane concentration for
- Stoichiometric ignition of 3.5% CH₄ in Argon, 1600K

- Ignition delay times measured from the arrival of reflected shockwave to rise of the pressure trace
- Arrival of shockwave determined as midpoint of the second pressure rise (rise due to reflected shock)

 Rise of OH Emissions measured as the intersection between the baseline and the tangent line drawn from maximum rise of OH
With out CO₂ addition there is pressure

rise after ignition

ATER ing to the energy needs of society

Ignition Results: 60% CO₂ addition

- Comparison of measured and simulated methane concentration for
- Stoichiometric ignition of 3.5% CH_4 in Argon diluted with 30% CO_{2} 1600K

Ignition Results in CH₄ Under SCO2 Conditions: 77.5% CO₂ addition

With CO_2 addition there is some pressure rise (7.5% fuel) after ignition \rightarrow but not as bad as the ones without CO_2

Ignition Results in CH₄/O₂ Under SCO₂ Conditions: 85% CO₂ addition

With CO_2 addition there is no pressure rise after ignition (4% fuel)

Low CH4 Loading: 3.9% $CH_4/O_2/CO_2$ data: $\phi=0.78$ 85% CO_2 addition

- Small scatter in IDT data
- ARAMCO and FFCM in excellent agreement with IDT up to 80 atm
- But two models differ significantly at high pressure (260 atm)

ATER ing to the energy needs of society

<u>High CH4 Loading</u> 7.5% $CH_4/O_2/CO_2$ data: $\phi=1.0$ 85% CO_2 addition

- Good agreement of models with data at 33 atm
 - Continue good agreement up to 110 atm
 - But models diverge at low T

CO₂-diluted Ignition Experiments are challenging: High-Speed Imaging for Accurate Ignition Determination

Reflected Shock Bifurcation

- Bifurcation is a result of differences in the energy level between the boundary layer and core flow. Occurs with diatomic and polyatomic molecules in the driven section
- Bifurcation induces inhomogeneities

Adapted from Kline et al. ISSW 1992 Penyazkov et al., 2016 SW

Methane/O₂/CO₂ Ignition Imaging Results CO2=89.5%

Experiments with CO2 addition is not trivial in shock tubes→ Boundary layer effects, shock bifurcation

Solution \rightarrow Use multiple diagnostics to study ignition process

ATER ing to the energy needs of society

Methane/O₂/CO₂ Ignition: High-Speed Imaging Results CO₂=0 %

CATER ing to the energy needs of society

Methane/O₂/CO₂ Ignition Imaging Results CO2=85%

Methane/O₂/CO₂ Ignition Results With Imaging

(a) Mixture 1: $XCH_4 = 0.035$, $XO_2 = 0.07$, $XCO_2 = 0.00$, XAr = 0.895. No CO_2

(b) Mixture 2: $XCH_4 = 0.035$, $XO_2 = 0.07$, $XCO_2 = 0.60$, XAr = 0.295. 60% CO_2

Difference in various definitions increase with addition of CO_2 However, the data can be compared to modeling predictions for various definitions

Select Syngas/O₂/CO₂ Ignition Delay Times

Note: Syngas fuel is a mixture of CO and H₂

Ignition Results in syngas Under SCO2 Conditions: 65% CO₂ addition

With CO_2 addition there is no significant pressure rise after ignition

Syngas /O2/CO2 Ignition Delay Time Measurements: Comparisons with Modeling

12 Literature kinetic mechanisms tested

All mechanisms overpredict data at high pressure !

ATER ing to the energy needs of society

Reaction Mechanism for sCO2

Chemical Mechanism Development Summary

- Combustion kinetics model refinement/development
- Existing kinetic models are only valid at low pressures < 50 atm
- We used multi-scale simulations to extend their validity to mixtures up to 300 bar by:
 - **1.** Quantum Mechanic simulations of the activation enthalpies in gas vs. CO₂ environment
 - 2. Molecular Dynamic simulations of reaction processes

Sensitivity Analysis

OH Sensitivity: Methane mixture 300 bar

List of Reactions

NSTC 🌜 UCF

Sensitivity Analysis

CH Sensitivity: Methane mixture at 300 bar

NSTC

UCF

The important elementary steps in high-pressure **CO-C4** fuel combustion

Table 4 Important reactions and the source of their rate constants used in the mechanism. Rate coefficients are in units of cal, mol, cm³, K. Rate constants are calculated as $k = A^{*}T^{n*}Exp(-Ea/RT)$ where T represents temperature and R represents the gas constant.

No.	Reaction	Α	n	Ea	Ref.
1	$H + O_2 = O + OH$	3.55E+15	-0.406	1.66E+04	[7]
2 ^c	$CO+OH = CO_2+H$	2.20E+05	1.89	-1.16E+03	[7], A*1.24
3	HCO+M = H+CO+M	4.75E+11	0.7	1.49E + 04	[6] ^a
4	$H+OH+M=H_2O+M$	4.50E + 22	-2	0.00E + 00	$[19]^{a}$
5	$C_{3}H_{5}-a+H(+M) = C_{3}H_{6}(+M)$	2.00E+14	0	0.00E + 00	[8]
	Low pressure limit:	1.33E+60	-12	5.97E+03	
	Troe parame	ters: 0.02, 1.10E+03, 1.10	E+03, 6.86E+03		
6	$CH_3 + CH_3(+M) = C_2H_6(+M)$	9.21E+16	-1.17	6.36E+02	[7] ^a
	Low pressure limit:	1.14E + 36	-5.246	1.71E + 03	
	Troe parai	meters: 0.405, 1.12E+03,	69.6, 1.00E+10		
7	$CH_3 + HO_2 = CH_3O + OH$	1.00E + 12	0.269	-6.88E+02	[7]
8	$CH_4+H=CH_3+H_2$	6.14E + 05	2.5	9.59E+03	[7]
9	$HO_2 + HO_2 = H_2O_2 + O_2$	4.20E + 14	0	1.20E + 04	[18] ^b
		1.30E+11	0	-1.63E+03	
10	$CH_4 + HO_2 = CH_3 + H_2O_2$	1.13E+01	3.74	2.10E + 04	[7]
11	$CH_3O_2+CH_3=CH_3O+CH_3O$	5.08E+12	0	-1.41E+03	[7]
12	$CH_3 + OH = CH_2(S) + H_2O$	4.51E+17	-1.34	1.42E + 03	[7]
13	$CH_3+O_2=CH_2O+OH$	2.64E + 00	3.283	8.11E+03	[7]
14	$CH_3 + H(+M) = CH_4(+M)$	2.14E+15	-0.4	0.00E + 00	[1] ^a
	Low pressure limit:	3.31E+30	-4	2.11E+03	
	Troe pa	rameters: 0.0, 1.00E-15, 1	.00E-15, 40.0		
15 [°]	$C_2H_4 + H(+M) = C_2H_5(+M)$	1.95E+12	0.454	1.82E + 03	[7] ^{a} , A*1.8
	Low pressure limit:	2.16E+42	-7.62	6.97E+03	
	Troe p	arameters: 0.975, 210, 984	4, 4.37E+03		

^aCollision efficiencies: CH₄ 2.0, CO 1.9, CO₂ 3.8, C₂H₆ 3.0, H₂O 6.0, H₂ 2.0, Ar 0.7.

^bRate constant is the sum of two expressions. ^cc.f. text. ^cc.f. text. ^bRate constant is the sum of two expressions. ^bRate constant is the sum of two expressions. Naik, C. V.; Puduppakkam, K. V.; Meeks, E. J Eng Gas Turbines Power

What is really happening during a reaction? Transition State Theory: 3-D potential energy surface $A+BC \rightarrow X^{\neq} \rightarrow AB+C$

Gas-Phase Heat release Reaction CO+OH \rightarrow CO₂+H

CATER ing to the energy needs of society **NSTC UCF**

Effects of supercritical solvent within framework of Transition State Theory

The supercritical solvent can modify predictions of this model in three ways:

- changing the ability to reach the equilibrium by the reactants and/or TS
- shifting this equilibrium, and
- changing probability of TS to convert to the products

Elementary Reaction CO+OH \rightarrow CO₂+H

(results with covalent CO₂ addition as a spectator: new mechanism discovered !!)

Figure 2. Relative energies (kcal/mol) of the reaction pathway shown on Scheme 1, with one covalently bound CO_2 molecule (*trans*-HOCO + CO_2 system is chosen as the reference point).

NSTC

UCF

Elementary Reaction $CO+OH \rightarrow CO_2+H$ (results with spectator CO_2 molecule)

Figure 3. Relative energies (kcal/mol) of two of the reaction pathways shown shown on Scheme 2 (in black) and Scheme 3 (in red) with spectator CO_2 molecule (the *trans*-HOCO + CO_2 system is chosen as the reference point).

- Pathways shown for CO2 autocatalytic effect published in J. Phys Chem A- Masunov & Vasu (2016)- above work
- CO₂ opens up new pathways and accelerates heat release
- Similar catalytic effects by CO2 seen in other reactions $(HO_2+HO_2 \rightarrow H_2O_2 + O_2)$ but not in $H_2CO + HO_2 \rightarrow HCO + H_2O_2$

NSTC

UCF

OVERALL REACTION: \cdot OH + CO \rightarrow CO₂ + H· (R1, k₁)

Actually goes through these 3 reactions including HOCO intermediate

$\cdot OH + CO \rightarrow HOCO \cdot$	$(R2, k_2)$
--	-------------

- $HOCO \rightarrow OH + CO$ (R2r, k₋₂)
- $HOCO \rightarrow CO_2 + H \cdot$ (R3, k₃)

NSTC

JCF

Molecule of intermediate in local minima

Optimized within DFT theory, and then this particle with optimized geometry was used for MD calculations

QM / MM model was used. MM layer look like small tubes, QM layer – particle with balls <u>QM: MNDO</u>; <u>MM: force field CHARMM27</u>

• CO₂ molecules are among the most efficient to accelerate heat release reaction with pressure

NSTC

UCF

• mixed quantum mechanics/molecular mechanics (QM/MM) theory level and molecular dynamics (MD) approach

Task 5: CFD development and implementation in OpenFOAM

- Real Gas Equations of State for sCO2
- Thermal properties for sCO₂ combustor
- CFD simulation status

sCO2 CFD Modeling

CFD Modeling Development

A CFD code is being developed using an existing open source CFD program called OpenFOAM, with the incorporation of a thermo-physical library and chemical kinetics mechanism that are applicable in the super critical regime. The resulting code will be able to simulate reacting and non-reacting CO2 flow through a large range of thermodynamic conditions, as experienced in a theoretical super critical engine cycle.

This will entail 4 steps;

- 1. Incorporate real gas equation of state.
- 2. Incorporate a super critical thermodynamic library.
- 3. Incorporate detailed sCO2 kinetic mechanism.
- 4. Incorporate the non-premixed CMC turbulent combustion model.

Once the CFD code is validated for supercritical CO2 flows, sensitivity and design studies will be performed on concept burners.

Objective

Objective: To identify necessary thermal and transport models for sCO_2 combustor simulations and to calculate elementary thermal properties for sCO_2 combustors.

- To find best equation of state for sCO₂ combustor modeling.
- To develop a model for 'compressibility factor'.
- To find best viscosity and thermal conductivity models.
- To quantify accurate elementary properties for sCO₂ combustors.

The comparison of EOS for sCO₂ and sO₂:

- PRS is accurate for sCO_2 and SRK is accurate for sO_2 .
- The EOS has to be validate for mixtures of combustion.

CATER ing to the energy needs of society 47

Comparison of supercritical mixture viscosity mixture models:

- No reference data to compare.
- Models predict within 10% of each other.
- Preferred model is identified based on the computational time.

ATER ing to the energy needs of society 48

Comparison of supercritical mixture viscosity models:

- Times are calculated for 100,000 cells.
- Lucas et al., method is more suitable for detailed kinetic mechanisms and LES or DNS simulations.

Comparison of supercritical mixture thermal conductivity models:

- Computational time calculated for 100,000 cells.
- Stiel and Thodos is the least expensive computationally and suitable for LES or DNS.

Property Conclusions

- Aramco 2.0, CHEMKIN-RG and PCMC are coupled to investigate thermal properties of the sCO₂ mixture.
- Soave-Redlich-Kwong EOS is identified as the better accurate EOS for modelling sCO₂ combustion density.
- Several preliminary thermal properties of sCO₂ combustor are quantified. A model is suggested for 'Z' in sCO₂ combustor.
- Lucas et. al., method is identified as the accurate and computationally advantageous Viscosity correlation for sCO₂ combustion.
- An accurate and inexpensive method is proposed by using Stiel and Thodos thermal conductivity correlation.

STER ing to the energy needs of society 51

Comparing conventional and supercritical combustion:

- Simulation is performed with the premixed CMC in the OpenFOAM RANS CFD code.
- The current PCMC-OpenFOAM model is capable of using large mechanisms. The current simulation uses 493 species and 2,714 reactions.
- Stoichiometric CH4/O2 with 95% by mass CO2.

Design strategy identified for future CFD simulation of dilution

- Stoichiometric CH4/O2 with 95% CO2 by mass. Half of the CO2 injected in the PSR and the remainder added to the PFRs.
- Real gas code with detailed Aramco mechanism

ATER ing to the energy needs of society

53

Lean operating strategy identified

• Lean burn sCO2 reduces exit CO and shortens the reactor length.

SEATER ing to the energy needs of society 54

Acknowledgement: DE-FE0025260 (Dr. Seth Lawson as program manager)

Thank you, Questions?

Vasu Lab 2016

