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This presentation will provide updates in three tasks

Progress on DOE cooled blade study

Underplatform sealing results with
and without vane trailing edge flow

Progress on heat flux gauge
manufacturing

Latest additive manufacturing results
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The Penn State START laboratory is founded on four pillars
of research emphasis to benefit the gas turbine community
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Several flow conditions in the main gas path and secondary
air system are matched to engine relevant parameters

Parameter at Blade Inlet Turbine START
Coolant-to-Mainstream Density Ratio Pc/Poo 2.0 1.0-2.0
Stage Pressure Ratio Po.in/Po exit 2 1.5-2.5
Rotational Reynolds Number Reg 2.0x107 + <2x107
Mass flow rate Ib,./s 25+ 25
Pressure PSIA 100’s 60-80
Axial Reynolds Number Re, 3x10° 3x10°
Turbine Inlet Temp oF ~ 2500 750
Secondary Coolant Temp ~ 1000 40
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The primary goal of this project is to evaluate public cooling
technologies in a ‘rainbow’ wheel in the START turbine
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PW subcontract status: internal core design for all blades
completed, thermal and structural assessments completed
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This past year’s study was to evaluate rim sealing
effectiveness in the presence of vane trailing edge (VTE) flow
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CO, seeding was used for tracing the various purge and vane

trailing edge (VTE) flows to determine rim sealing
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A baseline study was repeated for rim sealing effectiveness
without vane trailing edge flow to ensure repeatability

BASELINE STUDY Berdanier et al. [13]
MGP =0.2% Cco, MGP =0.2% Cco,
PURGE =0.2% CO, PURGE =0.2% CO,
VTE = N/A (no flow) VTE = N/A (no flow)
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Berdanier et al., 2018, “Scaling Sealing Effectiveness in a Stator-Rotor Cavity for Differing Blade Spans”, GT2018-77105 11



Various CO, seeding strategies were developed to
independently track purge and VTE flows in the rim seal

CO, Seed Configuration MGP Background Purge Flow VTE Dp / Dyos DPyre/ Pres
CO, Level CO, Level CO, Level

(1) Baseline 0.2% 1.0% No Flow 0.1-1.3 No Flow
(2) Purge 0.2% 1.0% 0.2% 0.1-13 0.4

(3) Purge+VTE 0.2% 1.0% 1.0% 0.1-1.3 0.4

(4) VTE1 0.2% 0.2% 1.0% 0.1-1.3 0.4

(5) VTE2 0.2% 0.2% 1.0% 0.4 0.1-0.7
(6) VTEMigration 0.2% 1.0% 1.0% 1.2 0-0.7
(7) PurgeMigration 0.2% 1.0% 1.0% 03-12 0.4

€,=0.2% C,=1% C=1%




Two CO, configurations showed VTE flow is entrained into
the wheelspace cavity with positive effectiveness results

BASELINE STUDY PURGE STUDY BASELINE STUDY PURGE+VTE STUDY
MGP = 0.2% c02 MGP - 0.2% coz MGP - 0.2% COZ MGP = 0.2% COz
PURGE =1.0% CO, PURGE =1.0% CO, PURGE =0.2%CO, PURGE =1.0%CO,
VTE = N/A (no flow) VTE = 0.2% €O, VTE = N/A (no flow) VTE =1.0% CO,
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Location A was found to be the least When seeding both purge and VTE
affected by the presence of VTE flow. flow, it was found that there is an

increase of sealing effectiveness.



Sole VTE seeding was performed to study the independent
effect of VTE flow in rim sealing effectiveness

VTE1 STUDY VTE2 STUDY
MGP =0.2% CO, MGP =0.2% CO,
PURGE =0.2% CO, PURGE =0.2%CO,
VTE =1.0% CO, VTE =1.0% CO,
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By holding the VTE flow fixed while By holding the purge flow fixed while
varying purge flow, it was found that varying VTE flow, it was found that VTE
VTE influence decreased as purge flow influence in the wheelspace increased
increased. as VTE flow increased.
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With VTE and purge, superposition predicted rim sealing
effectiveness

0s| Superposition Results
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Elongated test times combine with elevated temperatures
lead to instrumentation challenges in steady facilities

- Length | Tests Cumulative lati
Facility of Test [s] [Per Day 20 year Test current ’ atk?um
Time [hrs] — Topper L
OSU TTF 0.120 3 0.730 Teop
MIT 0.200 3 1.217 Polyimide
Oxford OTRF| 0.500 3 3.042 T
VKI 0.500 3 3.042 current o Jii
AFRL 2.500 3 15.208
Penn State | 8 [hrs]
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Using the Penn State Nanofabrication Lab, thin film HFGs

can be made to fine specifications
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Thermal property determination has been achieved over a
range of temperatures, necessary for accurate results

Specific Heat Thermal Properties as a
Function of Temperature
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The experimental and property evaluation temperatures
are not always equal, leading to errors in the measurement

Experimental Conditions 14R
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The results from an impinging jet show good agreement
with sensors fabricated at different institutions
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Part quality is associated with build direction, laser power,
machine, and powder variables—many choices to make
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Slow Scanning Speed, Low Power

Time elapsed: 0.000125 sec
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The laser power and scanning speed as well as scan strategy
were investigated

Power LHI= Laser Power
Scan Speed
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Adding a contour scan significantly decreases roughness to
an upskin

LHI = 0.13 J/mm
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Increasing contour laser power to scan speed ratios
decrease surface roughness
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As contouring is added, a dramatic effect results in
microchannel performance
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In-progress is overall effectiveness
comparisons of AM public film holes
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This past year’s work identified several key findings and
progress towards studying the cooled blades
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Cooled blade designs have been completed
and now need to be manufactured

Vane Trailing Edge flow has a positive effect
on the overall rim sealing effectiveness

Heat flux gages for use in a steady facility
have been evaluated.

Additive manufacturing process parameters

have promise in altering surface roughness.
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QUESTIONS




