Injection and Tracking of Micro Seismic Emitters to Optimize Unconventional Oil and Gas Development

FE0024360

Björn N.P. Paulsson
Paulsson, Inc.

U.S. Department of Energy
National Energy Technology Laboratory
Addressing the Nation’s Energy Needs Through Technology Innovation – 2019 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting
August 26-30, 2019
Presentation Outline

• Technical Status & Accomplishments to Date
• Paulsson, Inc. Introduction & Capabilities
• Surface Seismic vs. Borehole Seismic Imaging
• Tests with Fiber Optic Vectors Sensors (FOSVS)
• Injectable Micro Emitters (IME’s)
• Lessons Learned
• Synergy Opportunities
• Project Summary
Technical Status & Accomplishments

• Developed a Robust Deployment System for Borehole Sensors
• Developed very sensitive Fiber Optic Seismic Vector Sensors
• Tested Fiber Optic Sensors with the Deployment System
• Manufactured ~400 Fiber Optic Seismic Vector Sensors (FOSVS)
• Manufactured 40 Sensor Pod Housings. In the process to manufacture 110 Sensor Pod Housings.
• Manufactured & Tested a FOSVS System to DD = 6,000 ft
• Tested 1st Version of Acoustic Micro Emitters: 2mm = too large
• Tested 2nd Version of Acoustic Micro Emitters: 60µm = right size. 60µm is equivalent of 40-70 mesh which is a common proppant size
• We are looking for a test site for the Fiber Optic Seismic Vector Sensors (FOSVS) and the Injectable Micro Emitters
Paulsson, Inc. – The Company

Facility in Van Nuys, CA

ISO 1,000 Clean Room to build sensors

Machine Shop: Five state-of-Art CNC machines

15,000 ft Fiber Optic Cable with 15 fibers
Paulsson Commercial Experience
Made Possible by Past DOE Funding

• Recorded over 65 3D VSPs around the world
• Recorded the largest 3D VSP in the world using a 960 channel system (4 wells x 80 x 3C)
• Recorded VSP’s with the largest number of 3C clamped stations: 160 3C levels & 8,000 ft long
• Recorded the first multi-well (8 wells) 3D VSP
• Recorded 3D VSP data in the USA, Canada, China and Middle East
A Critical Point:
Before We Monitor the Injectable Micro Emitters We Must Image the Geology & Reservoirs In High Resolution!

Surface Seismic is not Sufficient!
Three Examples of 3D/4D VSP Imaging Results

1st: Using a 160 level 3C array in the BP Wamsutter Field
Location of the Wamsutter Field, WY, USA
Test of Surface Seismic & 3D VSP Technologies
Acquisition of a 160 level 3D VSP for BP in Wy
3D VSP, 6000 source pts, 160 levels 2,500 – 10,500 ft: 8,000 ft

Ramkhelawan et al., 2008
A 3D Surface Seismic Image

VSP well

Top Almond

Base Almond

Wamsutter P-wave PreSTM

2000 ms

4000 ft
A 3D Borehole Seismic Image
160 x 3C levels = 8,000 ft long
Areas of Large Gas Concentrations Mapped with 3D VSP technology. Not seen on Surface Seismic.

Geetan et al., 2011
2nd: Imaging an Old Oil Field in San Joaquin Valley, California using 3D Surface & Borehole Seismic Technology
The Edison Field – Discovered 1928 – 91 years ago
Wells Drilled in One Part of The Edison Field
3D Surface Seismic Technology (SST)

Drilling result: The new well encountered 300 ft of oil and became the biggest producer in the field.

Oil Sands in DS #2-X well doesn’t make it over to the DS #3 well.

New deviated well Drilled on a 3D Borehole Seismic Image
Drilling result: The new well encountered 300 ft of oil and became the biggest producer in the field.
3rd: Monitor CO2 using Borehole Seismic Technology (BoST)
FOSVS Field System
Funded under
DE-FE00024360
Clamping system operates by increasing the pressure inside the drill pipe and manifolds using the borehole fluid as the pressurized medium.
Fiber Optic Seismic Sensor System Deployment
Battelle, Michigan June 2016
Containerized Spool for Fiber Optic Seismic 3C Sensors

Fiber Optic Seismic 3C Sensor Pod
Deploying the FOSVS System into Horizontal Wells

Wells in equal-scale 3D

Overall Curvature

Minimum Curvature
Fiber Optic Seismic Vector Sensors
Fiber sensor, geophone and accelerometer are placed approximately 20 cm (8 inches) from the pressure vessel with AMEs.

Repeatability Test: 6 AME’s recorded on FOSVS: Outstanding Repeatability. Allow extraction of arrivals in high noise environment. AME Energy Released: ~0.1 J = M-3.5.

S/N = 250
S/N = 5
S/N = 0

Spectra
Can You Hear a Pin Drop?
Test Object: OD: 0.011”, 2” long, 24.8 mg
FOSVS Test: OD: 0.011”, 24.8 mg Pin Drop 1 cm:

2.5 µJ kinetic energy (M-7)
FOSVS Test: OD: 0.011”, 24.8 mg Pin Drop 1 cm:

2.5 µJ kinetic energy (M-7)
Field Test Data Recorded with Fiber Optic Seismic Vector Sensor (FOSVS)™ System
Results from Locating 0.5 gram String Shots During a Survey Recorded for Battelle in June 2016
Survey for Battelle - Locating String Shots and Micro Seismic Events
Recorded >20,000 events in four weeks. Displayed here are 130 events.
Red: String Shots; Blue: Focused Micro Seismic; Green: “Long Period” Events
Magnitude < M-2.9
Sound of A Focused MS in 3C, Survey for Battelle, June 2016

Filter: 80-100-1500-2000 Hz

Magnitude < M-2.9

Radial 2 Component (R2)

Radial 1 Component (R1)

Axial Component (A)

Time (ms)
Zoomed-In Focused MS in 3C- Filter: 2-4-3000-3800 Hz
Sound of A Long Duration Event (~M-5.0) – Maybe Fluid Flow
Injectable Micro Emitters (IME)
Size: Core 60 µm: With Coating: 200 µm
Matches 40/70 proppant
White: 40/70 Mesh Proppant
Black: 40/70 Mesh Smart Proppant
Pool Test of Micro Spheres as IME
Size: 60 µm
Matches 40/70 proppant
Pool Test Summary

• Location: Pool
• Source-Receiver Distance: 20 ft
• Receivers:
 • Optical: FOSVS and Fiber Optic Hydrophone (FOH)
 • Sampling rate: 150 kHz
 • Electrical: Geophone and Hydrophone
 • Geophone: Omni-2400
 • Hydrophone: Aquarian Scientific AS-1
 • Sampling rate: 40 kHz

• Sources:
 • Micro Emitters: 1 – 60 µm, Rated 2,000 psi (~ 4 grams)
 • Micro Emitters: 1 – 60 µm, Rated 4,000 psi (~ 4 grams)
Micro Emitters Data Recorded on Several Different Sensors

Vessel with IME’s @ 4 ft

Geophones, Hydrophone, FOSVS @ 4 ft
Pool Test 8: ~ 4gm Micro-Sphere at 4,000 psi at 20 ft
Zoom in on Test 8: ~ 4gm Micro-Sphere at 4,000 psi

Trace normalized display

Filter: 5-10-18,000-20,000 Hz
2019 Laboratory Tests of Micro Spheres as IME
Size: 60 µm
Matches 40/70 proppant
Lab Test Setup

- Date: July 15 2019
- Mixture: 10% of popper
- Offset: 10 ft
- Receivers:
 - 1C accelerometer on the bottom of the pressure vessel
 - 3C FOSVS and 3C accelerometers in the same pod in concrete 10 ft away
Filtered Data ([5 10 20k 30k] Hz)

3C FOSVS in Concrete (10ft Offset)

3C Accelerometer in the FOSVS pod (10ft Offset)

1C Accelerometer on the bottom of the pressure vessel
FOSVS Filtered R1 VisionFrax Data ([5-10-5k-6k] Hz)

FOSVS scale factor = 1 / 360
Effective & Accurate Monitoring of UOG
Injectable Micro Emitters (IME)

- Compliments standard micro seismic monitoring
- Allow localization of flowing fractures and fracture proppant
- Can produce valuable information on
 - fracture width vs. position
 - fracture orientation and size
 - number of fractures per fracking zone
- In combination with effective monitoring technology the IME technology allows for effective fracture optimization
Synergy Opportunities

• Application Areas Include
 • Oil & Gas: Conventional Primary, Secondary, Tertiary Recovery (now 35%)
 • Oil & Gas: Unconventional (~8% recovery; Where is the 92%?)
 • CCUS – Must secure a 99% compliance. Where is the CO2?
 • Geothermal – today NO geothermal rated seismic tools in existence.
 • Infrastructure – Pipelines, Dams, Other.

• The Developed Technology can be Used for Many of the Currently 17 Funded DOE Field Experimental Sites
 • Provide High Resolution Images to Better Understand the Geology of the Field Sites. Without Accurate Images the Knowledge Gained is Incomplete.
 • Provide High Resolution Monitoring of Small Seismic Events, M-5.0 and smaller. E.g. this will Allow Tracking of the Fracture Tips and the Fluid Flow.
 • Monitoring the Propagation of Micro Emitters is Potentially a Game changer
Acknowledgement

The research discussed in this presentation has been supported by the following grants:

- DOE Contract DE-FE0004522 (2010)
- RPSEA Contract 09121-3700-02 (2011)
- DOE Contract DE-EE0005509 (2012)
- California Energy Commission Contract GEO-14-001 (2013)
- DOE Contract DE-FE0024360 (2014)
- DOE SBIR II Grant DE-SC0018613 (2018) Downhole Source

The support and assistance from these grants made it possible to develop the fiber optic sensor and deployment technologies described in this presentation. The support from Karen Kluger for DE-FE0004522, Bill Head for RPSEA Contract 09121-3700-2, Bill Vandermeer for DE-EE0005509, Cheryl Closson for GEO-14-001 and Bill Fincham for DE-FE0024360 and SBIR Grants DE-SC0017222/17729/18613 is gratefully acknowledged.
Thank You!

For More Information Contact

bjorn.paulsson@paulsson.com

&

www.paulsson.com