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Presentation Outline

• Project Overview

• Technology Background

• Technical Approach/Project Scope

• Progress and Current Status of Project

• Plans for Future Testing/Development/Commercialization
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Performance Period: 10-01-2015 – 9-31-2018

Project Budget: Total/$1,909,018; DOE Share/$1,520,546; Cost-Share/$388,472 

Overall Project Objectives:
1. Prove the technical feasibility of the membrane- and adsorption-enhanced water gas

shift (WGS) process.

2. Achieve the overall fossil energy performance goals of 90% CO2 capture rate with
95% CO2 purity at a cost of electricity of 30% less than baseline capture approaches.

Key Project Tasks/Participants:
1. Design, construct and test the lab-scale experimental MR-AR system.-----USC

2. Select and characterize appropriate membranes, adsorbents and catalysts.-----M&PT, USC

3. Develop and experimentally validate  mathematical model.-----UCLA, USC

4. Experimentally test the proposed novel process in the lab-scale apparatus, and complete the
initial technical and economic feasibility study. .----- M&PT, UCLA, USC

Project Overview
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Conventional IGCC Power Plant 
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MR-AR Process Scheme

 Potential use of a TSA regeneration scheme allows the recovery of CO2 at high pressures.

 The MR-AR process overcomes the limitations of competitive singular, stand-alone systems, such as
the conventional WGSR, and the more advanced WGS-MR and WGS-AR technologies.
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MR-AR Process Scheme – Advantages over SOTA

Key Innovation:

• Highly efficient, low-temperature reactor process for the WGS reaction of coal-gasifier syngas
for pre-combustion CO2 capture, using a unique adsorption-enhanced WGS membrane reactor
(MR-AR) concept.

Unique Advantages:

• No syngas pretreatment required: CMS membranes proven stable in past/ongoing studies to all
of the gas contaminants associated with coal-derived syngas.

• Improved WGS Efficiency: Enhanced reactor yield and selectivity via the simultaneous removal
of H2 and CO2.

• Significantly reduced catalyst weight usage requirements: Reaction rate enhancement (over the
conventional WGSR) that results from removing both products, potentially, allows one to operate
at much lower W/FCO (Kgcat/mol.hr).

• Efficient H2 production, and superior CO2 recovery and purity: The synergy created between
the MR and AR units makes simultaneously meeting the CO2 recovery/purity targets together with
carbon utilization (CO conversion) and hydrogen recovery/purity goals a potential reality.
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Field-Testing of CMS Membranes

M&PT test-unit at 
NCCC for hydrogen 

separation 

CMS membranes and 
modules



Field Test – Syngas Composition 

NH3 ~1000 ppm; S ~1000 ppm; HCl < 5 ppm; HCN ~ 20 ppm; H2O >10%; high 
concentrations of napthalenic and other condensable hydrocarbons 
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Long-Term Stability Testing in Gasifier Off-gas [NCCC] 
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Original Project Targets: 
H2_Permeance  (350 – 500 GPU); 
H2/CO>80 (Equivalent to H2/N2>100) 

A New Generation of CMS Membranes
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Part ID He 
[GPU] 

N2 
[GPU] 

H2 
[GPU] 

CO2 
[GPU] 

H2/N2 
[-] 

H2/CO2 
[-] 

HMR-61  578 2.5 550 1.0 219 558 

HMR-67  450 1.6 581 2.8 354 211 

HMR-68  591 3.0 675 2.7 227 248 

MR-70  445 1.5 502 0.7 344 738 

HMR-72  500 1.7 602 2.5 359 246 

HMR-104  542 1.5 540 2.0 361 270 



Adsorbent Preparation and Characterization
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Lab-Scale Experimental Set-Up
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Lab-Scale Experimental Results and Analysis
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Co-Mo/Al2O3 Sour-Shift Catalyst Characterization
Global  Reaction Kinetics- Empirical Model and Comparison with Microkinetc Models
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Lab-Scale Experimental Results and Analysis, Cont.
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Conversion of MR and PBR with three different steam 
sweep ratios (300 ⁰C, feed pressure of 15 bar, CMS#1)

Conversion of MR and PBR with no sweep (250 ⁰C, 
feed pressure of 20 and 25 bar, CMS#2)

Experimental Conversion vs. W/FCO for MR and PBR



Lab-Scale Experimental Results and Analysis, Cont.
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Experimental Results of MR-AR Performance 

CO in the AR and total MR-AR conversion, and species molar flow rates. (Left Top) AR I, first cycle, (Right Top) AR II, first cycle, (Left 
Bottom) AR I, second cycle, (Right Bottom) AR II, second cycle. Temp.=250 °C, pressure=25 bar, H2O/CO ratio=2.8, W/FCO=55 g·h/mol. 
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Membrane Reactor (MR)/Adsorptive Reactor (AR) Sequence
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Multi-Scale MR-AR Model for Process Scale-Up



Multi-Scale MR-AR Model for Process Scale-Up – MR System
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Pellet-scale Model Equations & Boundary 
Conditions 

Reactor-scale Reaction Zone Model Equations 
& Boundary Conditions



Multi-Scale MR-AR Model for Process Scale-Up – MR System
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Dusty Gas ModelMR Reactor-scale Permeation Zone Model
Equations

The Stefan-Maxwell Equation

Momentum Equation



Multi-Scale MR-AR Model for Process Scale-Up – AR System
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Multi-Scale MR-AR Model for Process Scale-Up – AR System
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Initial and boundary conditions for the AR model. 

Initial Conditions:                     Boundary Conditions: 
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Constitutive laws and other property equations. 
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Lab-Scale Experimental Results and Model Fits - MR
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Experimental conversion for the MR with different sweep ratios and the corresponding MR model 
fits using both the empirical and microkinetic models. (300 ⁰C, feed pressure of 15 bar, CMS#1)

Experimental Conversion for Various Sweep Ratios and Model Predictions



Lab-Scale Experimental Results and Model Fits - MR
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Experimental hydrogen recovery and the corresponding MR model fits using both the empirical and 
microkinetic models. (300 ⁰C, feed pressure of 15 bar, CMS#1)

Experimental Hydrogen Recovery for Various Sweep Ratios and Model Predictions



Lab-Scale Experimental Results and Model Fits - AR
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Temperature = 250 °C, Pressure = 15 bar. 
(Wcat/FCO=55 on MR)

Temperature = 250 °C, Pressure = 15 bar. 
(Wcat/FCO=66 on MR)



Axial Profiles of Catalyst Effectiveness Factors in MR (Top) and PBR (Bottom) 
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 Catalyst effectiveness factors in 
PBR and MR vary significantly along 
reactor length

 Catalyst pellets of same diameter 
exhibit different effectiveness factors

 Sweep gas pressure/temperature 
and membrane area have a 
significant impact on MR behavior

 The adiabatic MR gives higher 
conversion values as compared to 
the wall-isothermal MR for the same 
operating conditions. 

Model Predictions for Industrial-Scale Systems 

Key Results 



Catalyst Effectiveness Factor Profiles in AR 
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Model Predictions for Industrial-Scale Systems 



Adsorbent Effectiveness Factor Profiles in AR 
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Model Predictions for Industrial-Scale Systems 



Preliminary TEA - MR-AR IGCC Process Scheme
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Preliminary TEA - CAPEX/OPEX of the MR-AR Process

Operating Cost Analysis of the MR-AR IGCC Process

Capital Cost Analysis of the MR-AR IGCC Process

Variable Operating Costs
Consumption Cost ($)

Initial Daily Per Unit Initial Fill
Water (/1000 gallons): 0 4,201 $1.67 $0 $2,053,253

Makeup and Waste Water Treatment 
Chemicals (lbs) 0 25,026 $0.27 $0 $1,957,230

Carbon (Mercury Removal) (lb): 135,182 231 $5.50 $743,501 $371,751
Shift Catalyst (ft3): 5,452 3.39 $610.9 $3,816,105 $763,221

Adsorbent (lb) 910,368 0.81 $145.7 $910,368 $182,074
Selexol Solution (gal): 242,554 36 $36.79 $8,923,873 $386,554

Claus Catalyst (ft3): w/equip 2.01 $203.15 $0 $119,487
Subtotal: $14,393,847 $5,833,570
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Preliminary TEA - MR-AR IGCC Process 

COE Breakdown for the MR-AR and Baseline IGCC Plants

Baseline IGCC with CCS (Case B5B) MR-AR IGCC
COE Component Value, $/MWh COE Component Value, $/MWh

Capital Cost 74.2 Capital Cost 60.3/(56.1)
Fixed Operating Cost 18.2 Fixed Operating Cost 17.1/(15.9)
Variable Operating Cost 12.2 Variable Operating Cost 9.8/(9.1)
Fuel Cost 30.7 Fuel Cost 28.8/(26.8)
Total COE 135.4 Total COE (N2 sale) 51.4/(43.3)

Designs Net Power 
Production (MWe)

CO2 Capture 
(%)

CO2 
Purity

COE 
($/MWh)

IGCC w/o CCS (Case B5A) 622 0 n/a 102.6
IGCC w/ CCS–Dual Stage 
Selexol (Case B5B) 543 90 99 135.4

MR-AR IGCC Plant 588 90.6 99 51.4/(43.3)

Performance Summary Baseline IGCC with CCS (Case 
B5B) MR-AR IGCC

Combustion Turbine Power, MWe 464 464
Sweet Gas Expander Power, MWe 7 4

Steam Turbine Power, MWe 264 264
Total Gross Power, MWe 734 731

CO₂ Compression, kWe 31,160 2,997
Hydrogen Compression, kWe 0 5,692

Water Pump, kWe 0 150
Acid Gas Removal, kWe 19,230 2,590
Total Auxiliaries, MWe 191 152

Net Power, MWe 543 579

Differences in Performance between MR-AR and Baseline IGCC Plants

Comparison in Performance between MR-AR and Baseline IGCC Plants



Milestone Log – BP2
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Budget Period

ID Task Description
Planned Completion 

Date

Actual Completion 

Date Verification Method

2 i 5
Parametric testing of the integrated, lab-scale MR-AR system and 
identification of optimal operating conditions for long-term testing 
completed

9/30/2017 9/30/2017 Results reported in the quarterly 
report

2 j 5
Short-term (24 hr for initial screening) and long-term (>100 hr) 
hydrothermal and chemical stability (e.g., NH3, H2S, H2O, etc.) 
materials evaluations at the anticipated process conditions completed

3/31/2018 3/31/2018 Results reported in the quarterly 
report

2 k 5 Integrated system modeling and data analysis completed 3/31/2018 3/31/2018 Results reported in the quarterly 
report

2 l 5

Materials optimization with respect to membrane 
permeance/selectivity and adsorbent working capacity at the 
anticipated process conditions (up to 300ºC for membranes and 300-
450ºC for adsorbents, and up to 25 bar total pressure) completed

12/31/2018 Results reported in the quarterly 
report

2 m 5
Operation of the integrated lab-scale MR-AR system for at least 500 hr 
at the optimal operating conditions to evaluate material stability and 
process operability completed

12/31/2018 Results reported in the quarterly 
report

2 n 6
Preliminary process design and optimization based on integrated MR-
AR experimental results completed 3/31/2019 Results reported in Final Report 

2 o 6
Initial technical and economic feasibility study and sensitivity analysis

completed
3/31/2019 Results reported in Final Report

1,2 QR 1 Quarterly report Each quarter Quarterly Report files

2 FR 1 Draft Final report 4/30/2019 Draft Final Report file



Success Criteria - BP2
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Decision 
Point Basis for Decision/Success Criteria

Completion 
of 

Budget 
Period 2

Successful completion of all work proposed in Budget Period 2.

Completion of short-term (24 hr) and long-term (>100 hr) hydrothermal/chemical stability evaluations. 
Membranes/adsorbents are stable towards fuel gas constituents (e.g., NH3, H2S, H2O) at the anticipated 
process operating conditions. Target <10% decline in performance over 100 hr of testing.

Completion of integrated testing and system operated for >500 hr at optimal process conditions. 

Results of the initial technical and economic feasibility study show significant progress toward 
achievement of the overall fossil energy performance goals of 90% CO2 capture rate with 95% CO2

purity at a cost of electricity 30% less than baseline capture approaches

Submission of updated membrane and adsorbent state-point data tables based on the results of integrated 
lab-scale MR-AR testing

Submission of a Final Report
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