Cost Analysis Associated with Capture, Transport, Utilization, and Storage of CO₂

Timothy C. Grant

David Morgan, Donald Remson, Allison Guinan, Chung Yan Shih, ShangMin Lin, Anna Wendt, and Derek Vikara

US DOE/NETL

U.S. Department of Energy

National Energy Technology Laboratory Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 13-16, 2018

Disclaimer

This study was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

• Introduction

- Current Models
 - FE/NETL CO₂ Saline Storage Cost Model (CO₂ Storage Cost Model)
 - FE/NETL CO₂ Transport Cost Model (CO₂ Transport Cost Model)
- Carbon Capture, Utilization, and Storage (CCUS) Modeling
- Life Cycle Analysis
- Models Under Development
- Ongoing Initiatives (Analogs, Economics, Geology)
- Conclusions

Carbon Capture Utilization & Storage

- Current Active Models
 - FE/NETL CO₂ Saline Storage Cost Model
 - FE/NETL CO₂ Transport Cost Model
- Model Development
 - FE/NETL Offshore CO₂ Saline Storage Cost Model
 - FE/NETL CO₂ Prophet
 - FE/NETL CO₂-EOR Cost Model
 - Will be adapted for offshore application
- Life Cycle Analysis Models
 - CO₂-EOR Life Cycle (CELiC) Model
- Ongoing Work
 - Analysis with or without use of models

- Introduction
- Current Models
 - CO₂ Storage Cost Model
 - CO₂ Transport Cost Model
- CCUS Modeling
- Models under development
- Life Cycle Analysis
- Models Under Development
- Ongoing Initiatives (Analogs, Economics, Geology)
- Conclusions

Current Models

• CO₂ Storage Cost Model

- Designed to meet Class VI regulations, estimate cost of compliance
- Geologic database representative of geologic section in numerous basins
- Can model storage costs for a single reservoir or multiple reservoirs
- Model assumes successful operations

• CO₂ Transport Cost Model

- Point-to-point transport cost modeling

CO₂ Storage Cost Model

Site Screening	Site Selection & Characterization	Permitting & Construction	Operations	PISC & Site Closure	Long-Term Stewardship				
		UIC Class VI Regu	lations	Developing state regulations					
			Class VI Pe						
0.5 to 1 year	3+ years	2+ years	30 to 50 years	10 to 50+ years	Rest of civilization				
Gather existing data; develop several prospects	Select a site; acquire new data (drill wells, shoot seismic); prepare permitting plans	Permit awarded to drill/test injection wells; final approval to begin injection; install MVA network	Inject CO _{2;} remediate existing wells as needed; new monitoring wells as needed; conduct MVA	Monitor site per plan; maintain financial responsibility; establish non- endangerment; close and restore site	Another entity (e.g., a state) takes over				
Assemble acreage block (surface access/pore space)		Secure financial responsibility upon permit application; as required, maintain financial responsibility through operations and PISC							
	25% success rate assumed		Pay \$/tonne fees*						
Negative cash flow			Positive cash flow	Negative cash flow	Covered by fee paid during ops				
*Per tonne cost associated with several cost items: long-term stewardship (state sets rate), insurance to cover emergency & remedial response (financial responsibility), a per/tonne "royalty" to pore space owner									

CO₂ Storage Cost Model

Cost Drivers:

• Reservoir quality

• Areal extent of plume

- Area of review
- Drives monitoring costs
 - » Monitoring wells
 - » Seismic
- Corrective action
- Financial responsibility

• Injection

- Annual mass of CO₂ injected
- Number of injection wells
- Class VI permit

CO₂ Storage Cost Model

- Storage resource potential exists across continental United States
- Geo-database: 87 formations in 36 basins across 27 states
- Quality of these potential reservoirs is variable

CO₂ Transport Cost Model

Grant, T., Guinan, A., Shih, C., Lin, S., Vikara, D., Morgan, D., and Remson, D., "Comparative analysis of transport and storage options from a CO₂ source perspective," *International Journal of Greenhouse Gas Control*, vol. 72, pp. 175-191, 2018.

- Two pipeline networks: dedicated pipeline system and trunkline pipeline system
 - Straight line segments routed through modeled storage sites
 - Trunkline hubs 30 mi (48 km) from storage sites
- CO₂ Transport Cost Model was used to estimate all pipeline transportation costs
 - Cost based on mass of CO₂
 transported, transport distance,
 and elevation at each end of the
 pipeline
 - Pipeline diameter and number of booster pumps were determined by the model
 - Five trunkline capacities with pipe diameters of 12 in to 36 in were modeled

- Introduction
- Current Models
 - CO₂ Storage Cost Model
 - CO₂ Transport Cost Model
- CCUS Modeling
- Life Cycle Analysis
- Models Under Development
- Ongoing Initiatives (Analogs, Economics, Geology)
- Conclusions

Four Basin Study

- Provide storage and transport costs for CCUS modeling
- Source using local coal

NETL, "Quality Guidelines for Energy System Studies: Carbon Dioxide Transport and Storage Costs in NETL Studies," U.S. Department of Energy, DOE/NETL-2017/1819, Found at: <u>https://www.netl.doe.gov/research/energy-analysis/search-publications/vuedetails?id=1027</u>

CCUS Modeling Four Basin Study

- Increased percentage of cost during permitting for Red River and Madison due to increase in drilling and completion costs for a deeper reservoir
- Madison reservoir is deepest of the four modeled here, plus it requires more than double the injection wells

Four Basin Study

- Cumulative storage potential cost supply curve for each basin
- CO₂ capture curve for electric and industrial sources suggests sufficient potential storage
- Pipeline configuration
 - 3.2 Mt/yr CO₂
 - 100 km (62 mi) distance
 - 2,200 psig inlet, 1,200 psig outlet

14

Dedicated Pipeline System vs. Trunkline Pipeline System

Grant, T., Guinan, A., Shih, C., Lin, S., Vikara, D., Morgan, D., and Remson, D., "Comparative analysis of transport and storage options from a CO₂ source perspective," *International Journal of Greenhouse Gas Control*, vol. 72, pp. 175-191, 2018.

15

Dome Structure

- MS6 low cost CCS for both pipeline systems
- Dedicated pipeline lowers cost to Mt. Simon over trunkline – by \$1-\$2
 - Dedicated 254 mi (408 km)
 - Trunkline 512 mi (824 km)
- Source at W200 has storage options
 - Multiple reservoirs at small cost difference

Year: 2011\$ | Capture: 3.58 | Source Location: W200 | Structure: Dome | Systems: Dedicated, Trunkline

Grant, T., Guinan, A., Shih, C., Lin, S., Vikara, D., Morgan, D., and Remson, D., "Comparative analysis of transport and storage options from a CO₂ source perspective," International Journal of Greenhouse Gas Control, vol. 72, pp. 175-191, 2018.

16

- Introduction
- Current Models
 - CO₂ Storage Cost Model
 - CO₂ Transport Cost Model
- CCUS Modeling
- Life Cycle Analysis
- Models Under Development
- Ongoing Initiatives (Analogs, Economics, Geology)
- Conclusions

Storage Activity Life Cycle Analysis July 2017 to July 2018 Accomplishments

- Outreach Presentations at LCA conference on Net Energy Analysis of CO₂-Enhanced Oil Recovery (EOR) and CO₂-Enhanced Methane Recovery (October 2017)
- A public version of the CO₂-EOR Life Cycle (CELiC) Model will be finalized (September 2018)
- Expanded life cycle inventories for two models: saline aquifer storage and CO₂-EOR

Storage Activity Life Cycle Analysis (cont'd) Upcoming Work

- Abstract accepted for LCA XVIII – Ft. Collins, CO – the life cycle interactions of saline aquifer characteristics and location
- Variability of environmental impacts of anthropogenic CO₂-EOR due to variability in EOR reservoirs and changing U.S. electricity generation mix
- Environmental impacts of transition from anthropogenic CO₂-EOR to saline aquifer storage (Class II to Class VI)

- Introduction
- Current Models
 - CO₂ Storage Cost Model
 - CO₂ Transport Cost Model
- CCUS Modeling
- Storage Activity Life Cycle Analysis
- Models Under Development
- Ongoing Initiatives (Analogs, Economics, Geology)
- Conclusions

FE/NETL Offshore CO₂ Saline Storage Cost Model

• Water Depth

- More steel
- Distance from Shore
 - Longer pipeline
 - Travel distance

Plume area

 Place onshore challenges under water

Injection wells

- Directional drilling
- DOI (BOEM/BSEE)
 - Regulatory oversight

FE/NETL CO₂ Prophet Model

- Simplified pattern-oriented streamline / stream tube black oil reservoir simulation program originally developed by Texaco E&P for DOE in early 1990s
 - Very fast, can simulate 30 years of CO₂ EOR operations in 5 to 20 seconds per pattern
 - Uses too little CO₂ to produce a barrel of oil (too efficient) and, consequently, stores too little CO₂
- Program recently updated so CO₂ needed to extract oil is more realistic
- Currently completing calibration of key variables using field data from 25 CO₂ EOR sites

FE/NETL CO₂ EOR Model

	Regional evaluation for a specific site	Site selection & characterization	Permitting	Operations	Post-Injection Monitoring	Long-term Stewardship					
		Negative Cash Flow		Positive Cash Flow Injection Fee	Negative Cash Flow	Developing State Regulations					
Geologic Storage (GS) Class VI	Volume of emissions to sequester & pore space needed. Geologic, geophysical, engineering, financial & social. Identify several prospective sites. Begin assembly of acreage block.	Assemble/acquire new data. Drill new well(s) & acquire seismic. Get necessary permits. Finish assembling acreage block. Prepare required plans for Class VI permit. FEED for site. Establish financial responsibility.	Submit all plans and financial responsibility for permit application. Approval to drill injection wells. State approves site permit. Drill Inj. Wells, incorporate new data in plans (AoR, etc) & present to Director. Injection operations approved. Have 180 days to submit MRV plan per Subpart RR regs.	Finish construction of surface facilities and MVA grid. Begin injection of captured CO2. Follow plans, AoR every 5 yrs., annual reporting. Annual MIT. Drill new monitoring wells/perform corrective action as plume expands. P&A injection wells per plan. Some financial responsibility instruments released.	Present PISC & site closure plan to Director. Apply for reduced time period. Follow PISC & site closure plan. P&A all wells, restore sites. Release of financial responsibility insturments. Establish non-endangerment.	Trust Fund covers costs Another entity accepts long-term stewardship, oversees trust fund, pays site costs, settles all claims.					
	0.5 to 1 year	3+ years	2+ years	30 to 50 years	10 to 50+ years	Rest of Civilization					
Enhanced Oil Recovery (EOR) Class II	Prospect Screening Facility/Field Design Facility/Field Construction			Operations	FE/NETL CO2 EOR Cost Model						
		Negative Cash Flow		Positive Cash Flow Oil & Gas Sales	Uses Input-Output from CO ₂ Prophet						
	Technical and Economic: - Reservoir & recoverable oil - Facilities & costs	Wells, processing plant, pipelines, pattern development, etc. Permitting, unitization. Contract for CO2.	Drill/workover wells, build plant, install pipelines, connect with CO2 source, etc.	Begin injcetion of CO2. Production of oil, gas, CO2 and water; Gas processing, separation. Recycling of CO2, purchase new CO2, Recycle/dispose of prod water as needed. O&M. Closeout. P&A wells at end.	 Field level cash flow analysis Brownfield or Greenfield (ROZ) analysis Eval up to 10 oil prices & 5 CO₂ cost values at each of the oil cost values Break-even cost of oil for a specific cost of CO₂ 						
								1 to 2 years		20 to 50 years	

- Introduction
- Current Models
 - CO₂ Storage Cost Model
 - CO₂ Transport Cost Model
- CCUS Modeling
- Storage Activity Life Cycle Analysis
- Models Under Development
- Ongoing Work (Analogs, Economics, Geology)
- Conclusions

Ongoing Work

- Analog Studies
 - Natural Gas Storage
 - Class I Injection
 - CO₂-EOR Leakage
- Co-Model with NRAP

 NsealR
- ROZ Reservoir Data
 - Permian Basin
 - San Andres
 - Greyburg
 - Other Basins

- Water Withdrawal
 - Multi-basin
 - Update technology
- Economic Analysis
 - FutureGen2, Petra Nova
 - LaBarge/Shutte Creek
 - Anthropogenic Sources
 - Investment preference
- Offshore modeling
 - Assess infrastructure
 - Initial assessment of costs
- Beta-testing EOR models

- Introduction
- Current Models
 - CO₂ Storage Cost Model
 - CO₂ Transport Cost Model
- CCUS Modeling
- Storage Activity Life Cycle Analysis
- Ongoing Work (Analogs, Economics, Geology)
- Conclusions

Conclusions

- NETL CCUS modeling is providing insight into the strengths and weaknesses of CCUS
 - Four Basin study, CCS network analysis
 - LCA analysis
- Other analysis provides knowledge on other factors that can impact CCUS
 - Economic analysis of large scale project, CO₂ sources
 - Developing geologic data: for ROZ, for storage cost model (onshore & offshore)
- Publicly available models are utilized by others to assess their own projects
 - Expands CCUS analytical capabilities
 - Provides NETL feedback on models

Acknowledgements

• NETL Research & Innovation Center

- Kristin Gerdes Associate Director Systems Engineering & Analysis (SEA) Division
- Peter Balash Energy Systems Analysis Team (ESAT) Supervisor
- Traci Rodosta Environmental Sustainability in Science & Technology Strategic Plans & Programs
- Mission Execution and Strategic Analysis (Contractors)
 - KeyLogic Systems, Inc.
 - Leidos
 - Deloitte
 - Advanced Resources International (ARI)

Questions

Resources

- Link to FE/NETL CO₂ Saline Storage Cost Model
 - <u>https://www.netl.doe.gov/research/energy-analysis/search-publications/vuedetails?id=2403</u>
- Link to FE/NETL CO₂ Transport Cost Model
 - <u>https://www.netl.doe.gov/research/energy-analysis/search-publications/vuedetails?id=630</u>
- Recent Publications:
 - Vikara, D., Shih, C., Lin, S., Guinan, A., Grant, T., Morgan, D., and Remson, D., "U.S. DOE's Economic Approaches and Resources for Evaluating the Cost of Implementing Carbon Capture, Utilization, and Storage (CCUS)," *Journal of Sustainable Energy Engineering*, vol. 5, no. 4, pp. 307-340, 2017.
 - Grant, T., Guinan, A., Shih, C., Lin, S., Vikara ,D., Morgan, D., and Remson, D., "Comparative analysis of transport and storage options from a CO₂ source perspective," *International Journal of Greenhouse Gas Control*, vol. 72, pp. 175-191, 2018.