Cost Analysis Associated with Capture, Transport, Utilization, and Storage of CO$_2$

Timothy C. Grant
David Morgan, Donald Remson, Allison Guinan, Chung Yan Shih, ShangMin Lin, Anna Wendt, and Derek Vikara

US DOE/NETL

U.S. Department of Energy
National Energy Technology Laboratory
Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration:
Carbon Storage and Oil and Natural Gas Technologies Review Meeting
August 13-16, 2018
Disclaimer

This study was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
• Introduction
• Current Models
 – FE/NETL CO₂ Saline Storage Cost Model (CO₂ Storage Cost Model)
 – FE/NETL CO₂ Transport Cost Model (CO₂ Transport Cost Model)
• Carbon Capture, Utilization, and Storage (CCUS) Modeling
• Life Cycle Analysis
• Models Under Development
• Ongoing Initiatives (Analogs, Economics, Geology)
• Conclusions
Carbon Capture Utilization & Storage

• Current Active Models
 – FE/NETL CO$_2$ Saline Storage Cost Model
 – FE/NETL CO$_2$ Transport Cost Model

• Model Development
 – FE/NETL Offshore CO$_2$ Saline Storage Cost Model
 – FE/NETL CO$_2$ Prophet
 – FE/NETL CO$_2$-EOR Cost Model
 - Will be adapted for offshore application

• Life Cycle Analysis Models
 – CO$_2$-EOR Life Cycle (CELiC) Model

• Ongoing Work
 - Analysis with or without use of models
• Introduction
• **Current Models**
 – CO$_2$ Storage Cost Model
 – CO$_2$ Transport Cost Model
• CCUS Modeling
• Models under development
• Life Cycle Analysis
• Models Under Development
• Ongoing Initiatives (Analogs, Economics, Geology)
• Conclusions
Current Models

- **CO₂ Storage Cost Model**
 - Designed to meet Class VI regulations, estimate cost of compliance
 - Geologic database representative of geologic section in numerous basins
 - Can model storage costs for a single reservoir or multiple reservoirs
 - Model assumes successful operations

- **CO₂ Transport Cost Model**
 - Point-to-point transport cost modeling

CO₂ Storage Cost Model

<table>
<thead>
<tr>
<th>Site Screening</th>
<th>Site Selection & Characterization</th>
<th>Permitting & Construction</th>
<th>Operations</th>
<th>PISC & Site Closure</th>
<th>Long-Term Stewardship</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>UIC Class VI Regulations</td>
<td>Class VI Permit</td>
<td>Developing state regulations</td>
</tr>
<tr>
<td>0.5 to 1 year</td>
<td>3+ years</td>
<td>2+ years</td>
<td>30 to 50 years</td>
<td>10 to 50+ years</td>
<td>Rest of civilization</td>
</tr>
</tbody>
</table>

- **Gather existing data; develop several prospects**
 - Select a site; acquire new data (drill wells, shoot seismic); prepare permitting plans
 - Permit awarded to drill/test injection wells; final approval to begin injection; install MVA network
 - Inject CO₂; remediate existing wells as needed; new monitoring wells as needed; conduct MVA
 - Monitor site per plan; maintain financial responsibility; establish non-endangerment; close and restore site

- **Assemble acreage block (surface access/pore space)**
 - Secure financial responsibility upon permit application; as required, maintain financial responsibility through operations and PISC

- 25% success rate assumed
- Pay $/tonne fees*
- Negative cash flow
- Positive cash flow
- Negative cash flow
- Covered by fee paid during ops

*Per tonne cost associated with several cost items: long-term stewardship (state sets rate), insurance to cover emergency & remedial response (financial responsibility), a per/tonne “royalty” to pore space owner
CO$_2$ Storage Cost Model

Cost Drivers:

- **Reservoir quality**
- **Areal extent of plume**
 - Area of review
 - Drives monitoring costs
 - Monitoring wells
 - Seismic
 - Corrective action
 - Financial responsibility
- **Injection**
 - Annual mass of CO$_2$ injected
 - Number of injection wells
 - Class VI permit
CO₂ Storage Cost Model

- Storage resource potential exists across continental United States
- Geo-database: 87 formations in 36 basins across 27 states
- Quality of these potential reservoirs is variable
CO₂ Transport Cost Model

- Two pipeline networks: dedicated pipeline system and trunkline pipeline system
 - Straight line segments routed through modeled storage sites
 - Trunkline hubs 30 mi (48 km) from storage sites
- CO₂ Transport Cost Model was used to estimate all pipeline transportation costs
 - Cost based on mass of CO₂ transported, transport distance, and elevation at each end of the pipeline
 - Pipeline diameter and number of booster pumps were determined by the model
 - Five trunkline capacities with pipe diameters of 12 in to 36 in were modeled

• Introduction
• Current Models
 – CO₂ Storage Cost Model
 – CO₂ Transport Cost Model
• CCUS Modeling
• Life Cycle Analysis
• Models Under Development
• Ongoing Initiatives (Analogs, Economics, Geology)
• Conclusions
CCUS Modeling

Four Basin Study

- Provide storage and transport costs for CCUS modeling
- Source using local coal

CCUS Modeling
Four Basin Study

- Increased percentage of cost during permitting for Red River and Madison due to increase in drilling and completion costs for a deeper reservoir.
- Madison reservoir is deepest of the four modeled here, plus it requires more than double the injection wells.
CCUS Modeling
Four Basin Study

- Cumulative storage potential cost supply curve for each basin
- CO₂ capture curve for electric and industrial sources suggests sufficient potential storage

Pipeline configuration
- 3.2 Mt/yr CO₂
- 100 km (62 mi) distance
- 2,200 psig inlet, 1,200 psig outlet

Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Midwest</td>
<td>Illinois</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Texas</td>
<td>East Texas</td>
<td></td>
<td>10.14</td>
<td>12.42</td>
<td>12</td>
</tr>
<tr>
<td>North Dakota</td>
<td>Williston</td>
<td>2.28</td>
<td></td>
<td>15.18</td>
<td>17</td>
</tr>
<tr>
<td>Montana</td>
<td>Powder River</td>
<td>22.72</td>
<td></td>
<td>25.00</td>
<td>25</td>
</tr>
</tbody>
</table>

CCUS Modeling
Dedicated Pipeline System vs. Trunkline Pipeline System

CCUS Modeling
Dome Structure

- MS6 low cost CCS for both pipeline systems
- Dedicated pipeline lowers cost to Mt. Simon over trunkline – by $1-$2
 - Dedicated 254 mi (408 km)
 - Trunkline 512 mi (824 km)
- Source at W200 has storage options
 - Multiple reservoirs at small cost difference

• Introduction
• Current Models
 – CO₂ Storage Cost Model
 – CO₂ Transport Cost Model
• CCUS Modeling
• Life Cycle Analysis
• Models Under Development
• Ongoing Initiatives (Analogs, Economics, Geology)
• Conclusions
Storage Activity Life Cycle Analysis
July 2017 to July 2018 Accomplishments

- Outreach – Presentations at LCA conference on *Net Energy Analysis of CO₂-Enhanced Oil Recovery (EOR)* and *CO₂-Enhanced Methane Recovery* (October 2017)

- A public version of the CO₂-EOR Life Cycle (CELiC) Model will be finalized (September 2018)

- Expanded life cycle inventories for two models: saline aquifer storage and CO₂-EOR
Storage Activity Life Cycle Analysis (cont’d)

Upcoming Work

- Abstract accepted for LCA XVIII – Ft. Collins, CO – the life cycle interactions of saline aquifer characteristics and location
- Variability of environmental impacts of anthropogenic CO$_2$-EOR due to variability in EOR reservoirs and changing U.S. electricity generation mix
- Environmental impacts of transition from anthropogenic CO$_2$-EOR to saline aquifer storage (Class II to Class VI)
• Introduction
• Current Models
 – CO₂ Storage Cost Model
 – CO₂ Transport Cost Model
• CCUS Modeling
• Storage Activity Life Cycle Analysis
• Models Under Development
• Ongoing Initiatives (Analogs, Economics, Geology)
• Conclusions
FE/NETL Offshore CO₂ Saline Storage Cost Model

- **Water Depth**
 - More steel

- **Distance from Shore**
 - Longer pipeline
 - Travel distance

- **Plume area**
 - Place onshore challenges under water

- **Injection wells**
 - Directional drilling

- **DOI (BOEM/BSEE)**
 - Regulatory oversight
FE/NETL CO₂ Prophet Model

- Simplified pattern-oriented streamline / stream tube black oil reservoir simulation program originally developed by Texaco E&P for DOE in early 1990s
 - Very fast, can simulate 30 years of CO₂ EOR operations in 5 to 20 seconds per pattern
 - Uses too little CO₂ to produce a barrel of oil (too efficient) and, consequently, stores too little CO₂
- Program recently updated so CO₂ needed to extract oil is more realistic
- Currently completing calibration of key variables using field data from 25 CO₂ EOR sites
FE/NETL CO₂ EOR Model

<table>
<thead>
<tr>
<th>Regional evaluation for a specific site</th>
<th>Site selection & characterization</th>
<th>Permitting</th>
<th>Operations</th>
<th>Post-Injection Monitoring</th>
<th>Long-term Stewardship</th>
</tr>
</thead>
</table>

| 0.5 to 1 year | 3+ years | 2+ years | 30 to 50 years | 10 to 50+ years | Rest of Civilization |

<table>
<thead>
<tr>
<th>Prospect Screening</th>
<th>Facility/Field Design</th>
<th>Facility/Field Construction</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical and economic: - Reservoir & recoverable oil - Facilities & costs</td>
<td>Wells, processing plant, pipelines, pattern development, etc. Permitting, unitization, Contract for CO₂.</td>
<td>Drill/workover wells, build plant, install pipelines, connect with CO₂ source, etc.</td>
<td>Begin injection of CO₂. Production of oil, gas, CO₂ and water; Gas processing, separation. Recycling of CO₂, purchase new CO₂. Recycle/dispose of prod water as needed. O&M. Closeout. P&A wells at end.</td>
</tr>
</tbody>
</table>

| 1 to 2 years | 20 to 50 years |

FE/NETL CO₂ EOR Cost Model
- Uses Input-Output from CO₂ Prophet
- Field level cash flow analysis
- Brownfield or Greenfield (ROZ) analysis
- Eval up to 10 oil prices & 5 CO₂ cost values at each of the oil cost values
- Break-even cost of oil for a specific cost of CO₂
• Introduction
• Current Models
 – \(\text{CO}_2 \) Storage Cost Model
 – \(\text{CO}_2 \) Transport Cost Model
• CCUS Modeling
• Storage Activity Life Cycle Analysis
• Models Under Development
• Ongoing Work (Analogs, Economics, Geology)
• Conclusions
Ongoing Work

• Analog Studies
 – Natural Gas Storage
 – Class I Injection
 – CO$_2$-EOR Leakage

• Co-Model with NRAP
 – NsealR

• ROZ Reservoir Data
 – Permian Basin
 • San Andres
 • Greyburg
 – Other Basins

• Water Withdrawal
 – Multi-basin
 – Update technology

• Economic Analysis
 – FutureGen2, Petra Nova
 – LaBarge/Shuttle Creek
 – Anthropogenic Sources
 – Investment preference

• Offshore modeling
 – Assess infrastructure
 – Initial assessment of costs

• Beta-testing EOR models
• Introduction
• Current Models
 – CO₂ Storage Cost Model
 – CO₂ Transport Cost Model
• CCUS Modeling
• Storage Activity Life Cycle Analysis
• Ongoing Work (Analogs, Economics, Geology)
• Conclusions
Conclusions

• **NETL CCUS modeling is providing insight into the strengths and weaknesses of CCUS**
 – Four Basin study, CCS network analysis
 – LCA analysis

• **Other analysis provides knowledge on other factors that can impact CCUS**
 – Economic analysis of large scale project, CO₂ sources
 – Developing geologic data: for ROZ, for storage cost model (onshore & offshore)

• **Publicly available models are utilized by others to assess their own projects**
 – Expands CCUS analytical capabilities
 – Provides NETL feedback on models
Acknowledgements

• **NETL Research & Innovation Center**
 – Kristin Gerdes – Associate Director Systems Engineering & Analysis (SEA) Division
 – Peter Balash – Energy Systems Analysis Team (ESAT) Supervisor
 – Traci Rodosta – Environmental Sustainability in Science & Technology Strategic Plans & Programs

• **Mission Execution and Strategic Analysis (Contractors)**
 – KeyLogic Systems, Inc.
 – Leidos
 – Deloitte
 – Advanced Resources International (ARI)
Questions
Resources

• Link to FE/NETL CO₂ Saline Storage Cost Model

• Link to FE/NETL CO₂ Transport Cost Model

• Recent Publications: