

Global Update on CCUS and Higher Capture Rates Tim Dixon IEA Greenhouse Gas R&D Programme

2018 NETL CO₂ Capture Technology Project Review Meeting

13 August 2018, Pittsburgh, USA

www.ieaghg.org

Membership

Cost-shared Technology Collaboration Programme

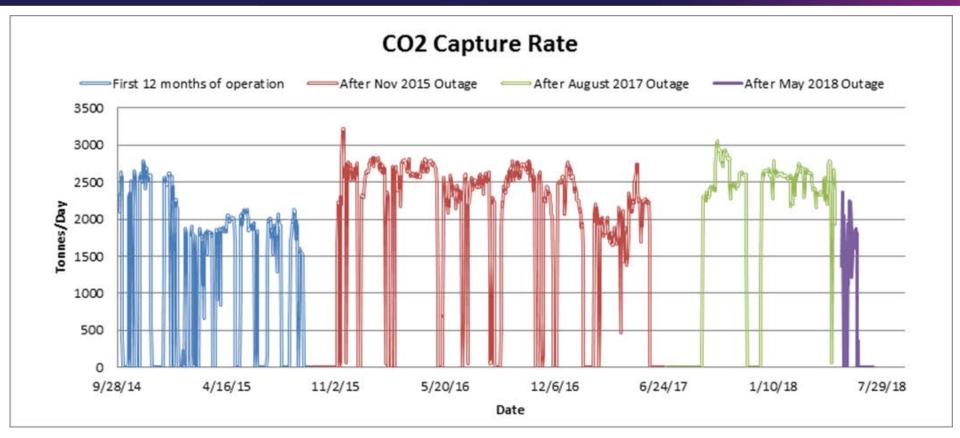
Global Update on CCUS - Projects

- 21 large-scale CCS projects in operation or under construction globally
 - CO₂ capture capacity of **37** Mt/yr
- > 4 projects in construction as of November 2017
- 5 more large-scale CCS projects at an advanced stage of development planning
 - CO₂ capture capacity of ~ 8 Mt/yr
- 11 more large-scale CCS projects are in earlier stages of planning
 - CO₂ capture capacity of ~21 Mt/yr
- Cumulative injection > 220 Mt CO2

Source: Global CCS institute 2017

Key CCS facility developments globally

ccsknowledge.com


Boundary Dam

Learning starts here. Next plant will be up to 30% cheaper.

ccsknowledge.com

CCS KNOWLEDGE

Reliable Performance of Capture Island Since 2017 Outage

Λ

CCS KNOWLEDGE

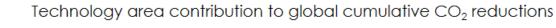
L

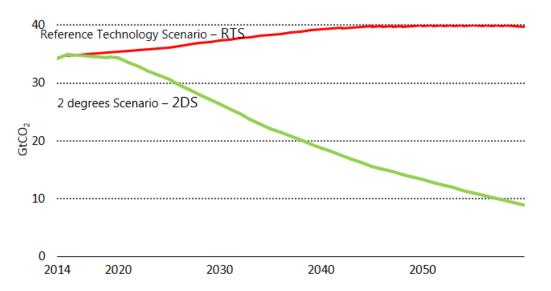
Global Update on CCUS - Policy

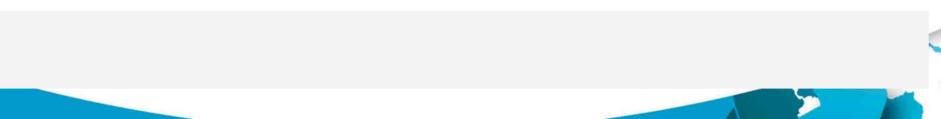
- CCUS Initiative launched under Clean Energy Ministerial Ministerial launch in Copenhagen, May 2018
- Mission Innovation's Carbon Capture Challenge report issued
 - > 30 Priority Research Directions for advancing the performance and reducing the costs of CCUS, focussing on low technology readiness levels (TRL)

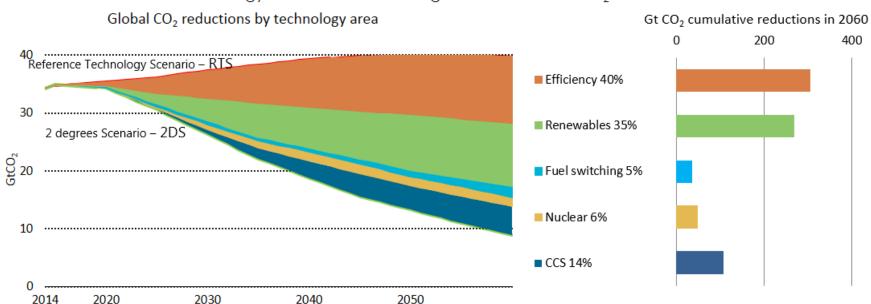
Ministerial launch in Malmo, May 2018

- Country developments
 - > USA enhanced 45Q
 - Norway FEED on industrial CCS for cement and WtE
 - > UK CCUS Cost Challenge Task Force report
 - \succ Japan/Australia/Norway/UK Hydrogen value chains with CCS

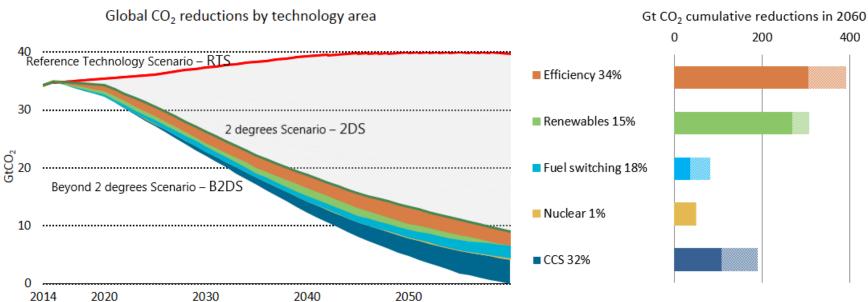



ETP 2017 The role of CCS


CCS plays a leading role in the energy transformation

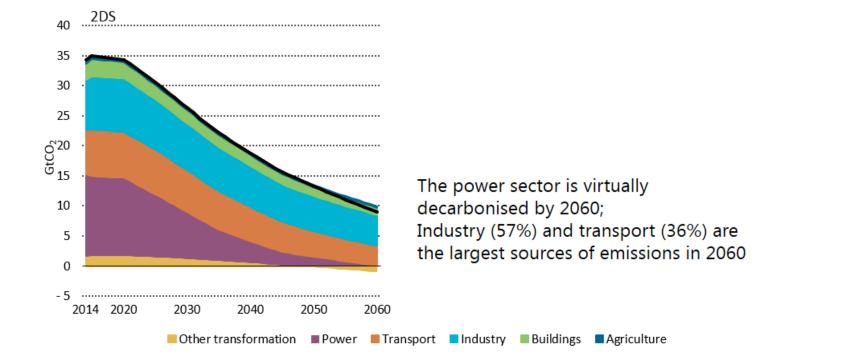


Global CO2 reductions by technology area


CCS plays a leading role in the energy transformation

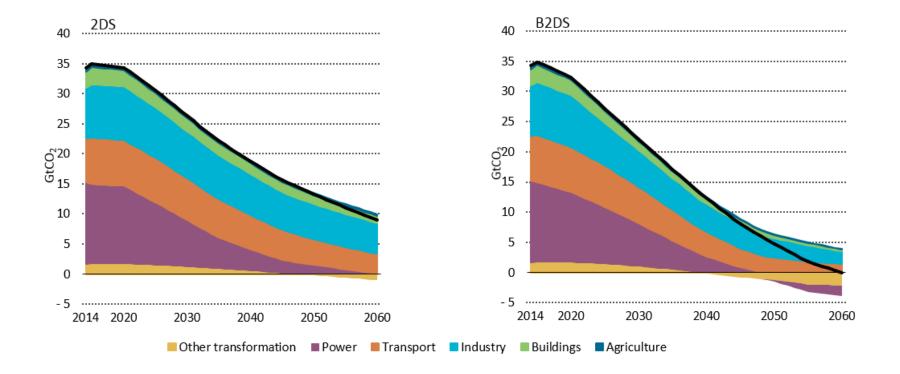
Technology area contribution to global cumulative CO₂ reductions

CCS plays a leading role in the energy transformation


Technology area contribution to global cumulative CO₂ reductions

Pushing energy technology to achieve carbon neutrality by 2060 could meet the mid-point of the range of ambitions expressed in Paris

Remaining CO₂ emissions in the 2DS and B2DS



The remaining CO₂ emissions in industry and power must be targeted for the B2DS

Remaining CO₂ emissions in the 2DS and B2DS

The remaining CO₂ emissions in industry and power must be targeted for the B2DS Negative emissions are necessary to achieve net-zero emissions in 2060

IPCC 1.5 Special Report

- Impacts and pathways to achieving 1.5C by 2100, in context of increasing global response, sustainable development and poverty
- To agree and publish SR1.5 in September 2018
- Expert reviews: August-September 2017; January-February 2018
- <u>https://www.ipcc.ch/report/sr15/</u>

IPCC SR 1.5

Chapters

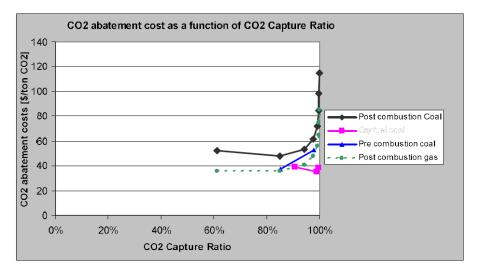
- 1. Framing and Context
- 2. Mitigation pathways compatible with 1.5C in context of sustainable development
- 3. Impacts of 1.5C on natural and human systems
- 4. Strengthening and implementing the global response
- 5. Sustainable development

Integrated Assessment Models used to inform IPCC, IEA and others. These typically assume Capture rate of 90%—this is a limiting factor for CCS deployment in IAMs later this century.

IEAGHG Study -Towards Zero Emissions CCS

CSIRO appointed as contractor (6 July 2017)

- Initial results presented to IEAGHG members May 2018
- > Draft report received, peer reviewed, awaiting final version



Results from earlier studies

Previous dedicated studies give diverging technoeconomic results—but capture rates mostly 85-90%

IEA GHG 2006

Significant cost increases when going from 90% to 99% CO₂ capture

DOE NETL 2011

Minor cost increases when going from 90% to 99% CO_2 capture

Reducing the CO₂ slip

Capture route	Capture rate determinant	Opportunity to lower CO₂-slip
Oxyfuel	- O_2 purity - Ambient air leakage - CO ₂ processing unit	- CO_2 recovery from vent gases - Avoidance of inerts in CO_2 product - Trade-off with CO_2 purity
Pre-combustion	 Carbon conversion process CO₂ capture process O₂ purity (gasification) 	 Water gas shift reaction conditions Avoidance of inerts in syngas Residual CO recovery from syngas CO₂ separation from syngas CO₂ separation from flue gas
Post-combustion	- CO ₂ capture process	- CO ₂ separation from flue gas

Overview of capture technologies

Capture technology	90% CO ₂ -capture	99% CO ₂ -capture	Comments
Chemical absorption	+	+	Increased costs Higher energy
Physical absorption	+	+	Pressurised gas streams Deeper regeneration
Solid sorbent - chemical	+	+	Process design optimisation Steam stripping; vacuum
Solid sorbents - physical	+	+/-	Trade off with CO ₂ -purity Process design optimisation
Chemical looping	+	+	Selective process Avoidance of leakage between reactors
Polymeric membranes	+	-	Bulk separation works best with pressurised gas streams Trade of with CO ₂ -purity High compression/low vacuum needed
Metal membranes (H ₂)	+	+	Used with pressurised gas streams High selectivity
Ion transport membranes (O ₂)	+	+	High selectivity
Ceramic membranes	+	+	Used with pressurised gas streams
Refrigeration	+	+/-	Higher capture rates achievable with CO_2 -solid formation; purity issues with liquid formation

Conclusions

- Ubiquitous 90% CO₂ capture puts an artificial limit on CCS deployment
- All three CO₂ capture routes are adaptable to increase in capture rates
- Most CO₂-capture technologies allow for higher CO₂ capture rates than 90%
- Indirect emissions are dominant at high (99%) CO₂ capture rates
- Biomass co-combustion with 90% CO₂ capture provides zero emissions
- Techno-economic assessments for amine-based PCC indicate only minor cost increases

Report will be presented at GHGT-14

- 1077 Abstracts from 43 countries!
- Technical Programme available early May 2018
- 355 Oral Presentations, 500+ Poster presentations.
- Authors notified early May 2018
- Registration open. Early bird rate ends 13 June 2018

BUILDING A LOW EMISSIONS FUTURE

www.ghgt.info Melbourne, Australia, October 21-26, 2018

Post Combustion Capture Conference

- PCCC5
- 17-19 September 2019
- Hosted by RITE in Kyoto, Japan
- Site visits 20 September
- Call for abstracts Dec 2018

Thank you

Tim.Dixon@ieaghg.org

