Integrated CCS for Kansas (ICKan) Project Number FE0029474

Esmail Ansari Tandis Bidgoli

Kansas Geological Survey

University of Kansas

Martin Dubois

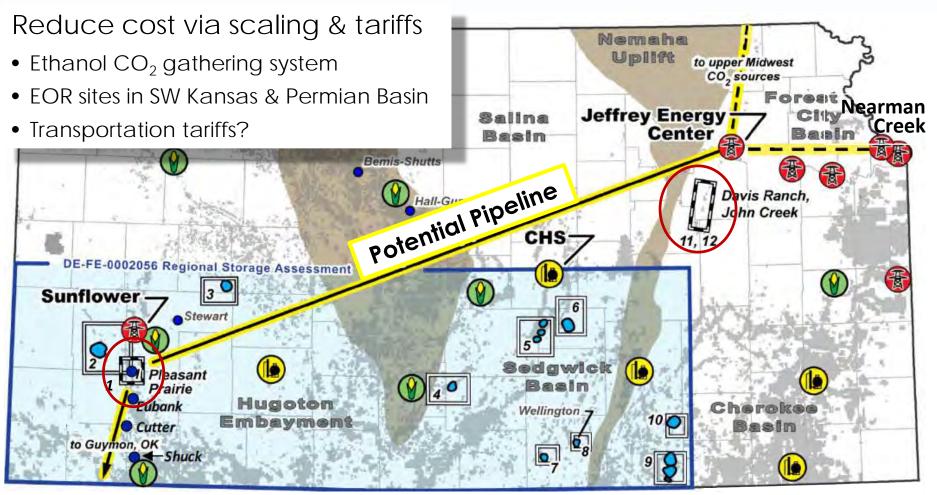
Improved Hydrocarbon Recovery, LLC

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 13-16, 2018

Presentation Outline

- Technical Status
 - Project Overview
 - Goals & Objectives
 - CCS Team & Participants
 - Sub-basinal Evaluations
 - CO₂ Sources & Transportation Assessments
 - Legal, Regulatory, and Public Policy
- Accomplishments to Date
- Lessons Learned & Synergy Opportunities
- Project Summary


Technical Status Project Overview: Goal & Objectives

- Identify and address major technical and nontechnical challenges of implementing CO₂ capture and transport and establishing secure geologic storage for CO₂ in Kansas
- Evaluate and develop a plan and strategy to address the challenges and opportunities for commercial-scale CCS in Kansas

Technical Status Project Overview: Base Case Scenario

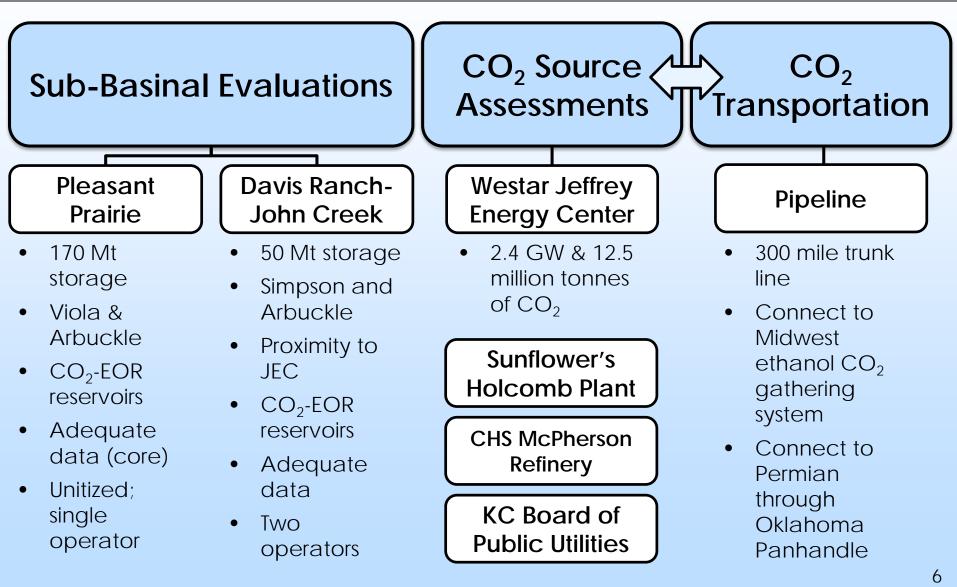
- Capture 50 million tonnes CO₂ from one of three Jeffrey Energy Center's 800 MWe plants over a 20 year period (2.5Mt/yr)
- Compress CO₂ and transport 300 miles to Pleasant Prairie Field in SW Kansas.
 - Alternative: 50 miles to Davis Ranch and John Creek Fields.
- Inject and permanently store 50 million tonnes CO₂ in the Viola Formation and Arbuckle Group

Jeffrey to SW Kansas

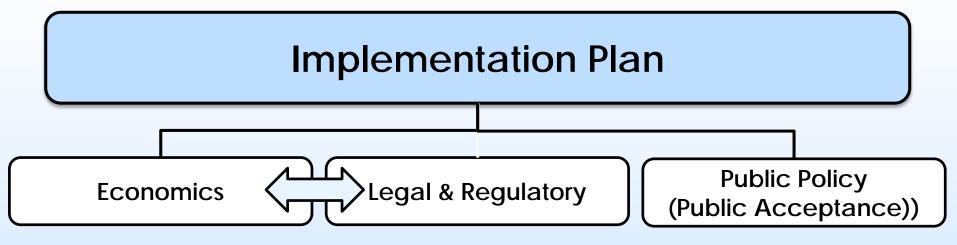
coal-fired power plant

ethanol plant

petroleum refinery or manufacturing plant (cement & fertilizer)



proposed geologic storage complex geologic storage complex study area and closure


oil and gas fields

index map [KS]

Technical Evaluations

Non-Technical Evaluations

- Capture & transportation economic feasibility (with or w/o ethanol component)
- Financial backing
- Financial assurance under Class VI
- State incentives
- Federal tax policy

- Pore space property rights including force unitization
- CO₂ ownership & liability
- MVA requirements under UIC Class VI
- Varying stakeholder interests
- Right-of-ways
- Utility rate-payer obligations

- Identify stakeholders
- Foster relationships
- Public perception
- Political challenges
- Injection-induced seismicity

Phase 1 Research Team

19 team members, 4 subcontractors and KGS staff

Project Management & Coordination, Geological Characterization

Kansas Geological Survey University of Kansas Lawrence, KS

Tandis Bidgoli, PI, Assistant Scientist Lynn Watney, Senior Scientific Fellow Eugene Holubnyak, Research Scientist K. David Newell, Associate Scientist John Doveton, Senior Scientific Fellow Susan Stover, Outreach Manager Mina FazelAlavi, Engineering Research Asst. John Victorine, Research Asst., Programming Jennifer Hollenbah - CO2 Programs Manager Esmail Ansari, Postdoctoral Researcher

Improved Hydrocarbon Recovery, LLC Lawrence, KS Martin Dubois, Joint-PI, Project Manager

CO2 Source Assessments, Capture & Transportation, Economic Feasibility

Linde Group (Americas Division)

Houston, TX

Krish Krishnamurthy, Head of Group R&D Kevin Watts, Dir. O&G Business Development

Energy, Environmental, Regulatory, & Business Law & Contracts

Depew Gillen Rathbun & McInteer, LC

Wichita, KS Christopher Steincamp, Attorney at Law Joseph Schremmer - Attorney at Law

Policy Analysis, Public Outreach & Acceptance

Great Plains Institute

Minneapolis, MN

Brendan Jordan, Vice President Brad Crabtree, V.P. Fossil Energy Jennifer Christensen, Senior Associate Dane McFarlane, Senior Research Analysist

Industry Partners

Four CO₂ Sources

CO2 Sources

Westar Energy

Brad Loveless, Exec. Director Environ. Services Dan Wilkus, Director - Air Programs Mark Gettys, Business Manager

Kansas City Board of Public Utilities

Ingrid Seltzer, Director of Environmental Services

Sunflower Electric Power Corporation

Clare Gustin, V.P. Member Services & Ext. Affairs

CHS, Inc. (McPherson Refinery)

Richard K. Leicht, Vice President of Refining Rick Johnson, Vice President of Refining

Regulatory

Kansas Department of Health & Environment

Division of Environment

John W. Mitchell, Director

Bureau of Air

Rick Brunetti, Director

Five Oil & Gas Companies

Kansas Oil & Gas Operators

Blake Production Company, Inc.

(Davis Ranch and John Creek fields)

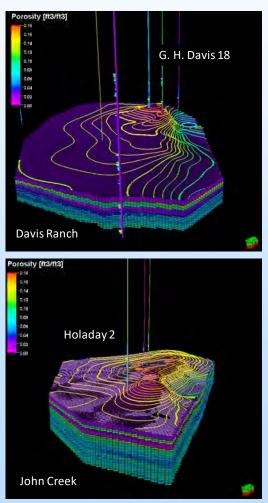
Austin Vernon, Vice President

Knighton Oil Company, Inc. (John Creek Field) Earl M. Knighton, Jr., President

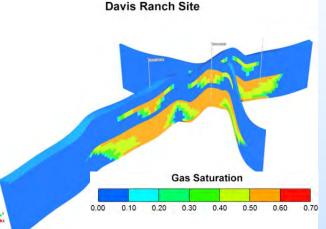
<u>Casillas Petroleum Corp.</u> (Pleasant Prairie Field)

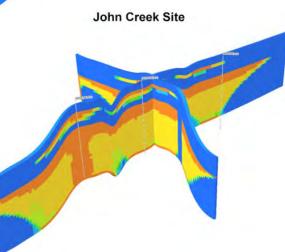
Chris K. Carson, V.P. Geology and Exploration

<u>Berexco, LLC</u>


(Wellington, Cutter, and other O&G fields) Dana Wreath, Vice President

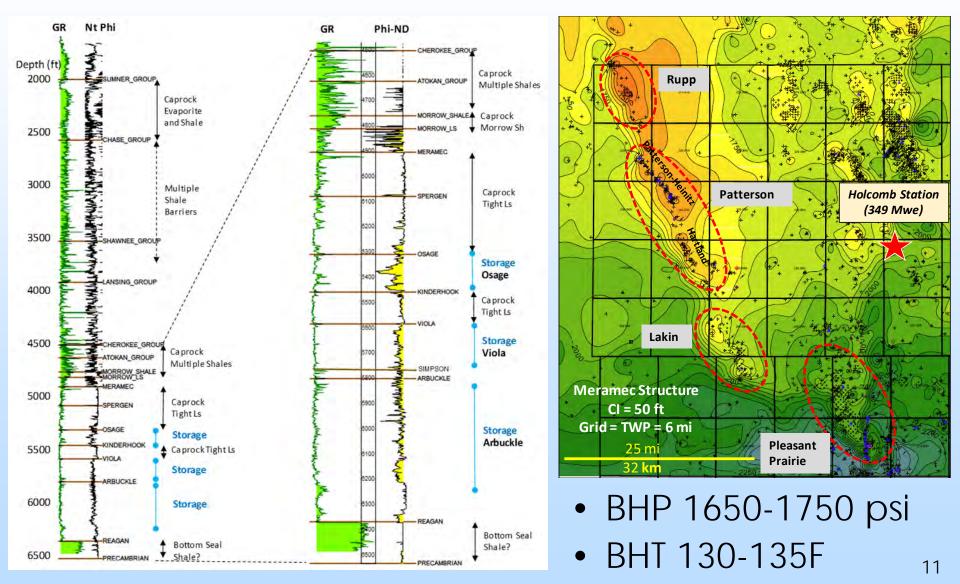
Stroke of Luck Energy & Exploration, LLC (Leach & Newberry fields)


Ken Walker, Operator


Technical Status DR & JC Fields Evaluations

Static 3D cellular models: Porosity & permeability in 3100-3400 ft-deep res.

Dynamic models: analyze injectivity and storage capacity in Simpson and Arbuckle

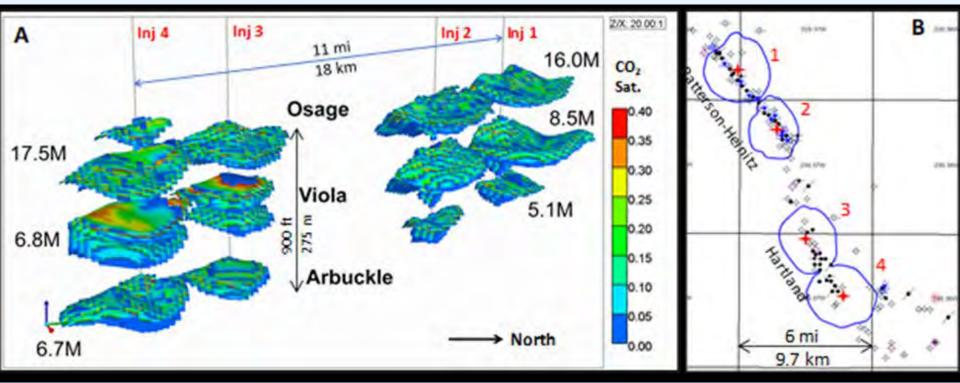


Two largest fields in FCB, located ten miles apart 40-50 miles SW of JEC

Results:

- ✓ Injected for 25 years
- ✓ Combined injection rates: 2350 to 4000 tonnes/day
- ✓ Storage: 24.6 million tonnes
- ✓ Injection rate satisfactory
- ✓ Storage is half the 50 Mt target

Technical Status North Hugoton Storage Complex


Technical Status Patterson-Heinitz-Hartland Fields

Static 3D cellular model:

- Few wells penetrate saline storage zones (21 wells total)
- Properties established from limited core and injection test

Initial simulation:

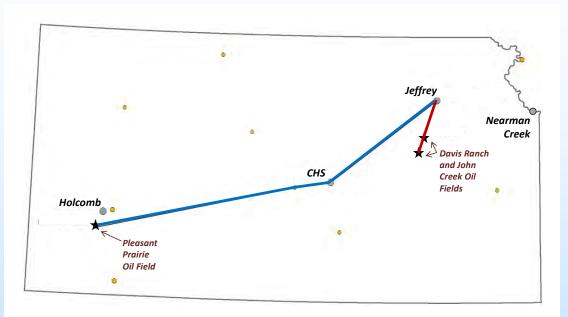
- ✓ Inject 5,800 metric tonnes/day
- ✓ 60.6 Mt in 30 yrs
- ✓ Four wells, three zones
- ✓ Additional work to optimize injection

Technical Status CO₂ Source Assessments

Jeffrey Energy Center

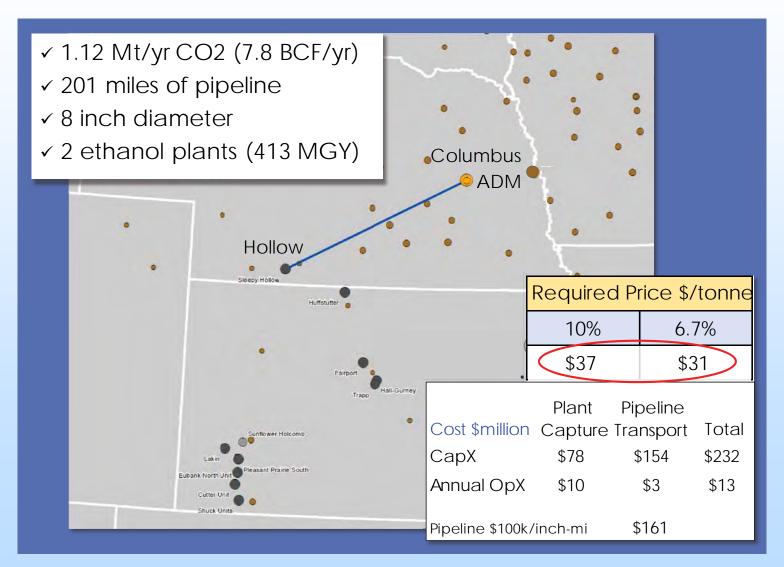
- Three 800 MWe power plants: 12.5 Mt/yr CO2
- 2.5 Mt/yr CO₂ from ~350 Mwe (partial capture)
- Linde-BASF novel amine-based Post Combustion Capture (PCC) technology

CHS refinery

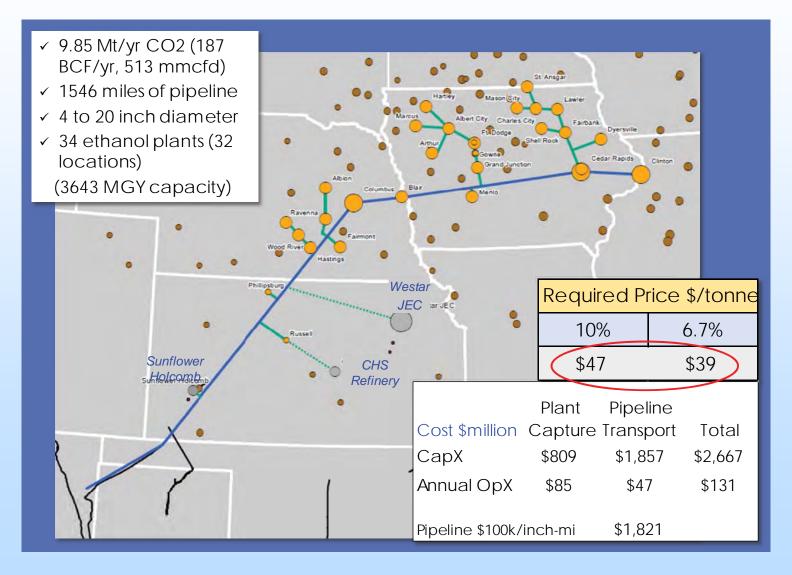

- Two steam methane reformer H2 plants
- 0.76 Mt/yr CO₂ capture from flue gas
- Two options: Solvent-based PCC from flue gas or Sorbent-based pressure or vacuum swing adsorption, but lower capture rate

Accomplishments to date:

- 1. Identified optimization opport. through site visits and data gathering
- 2. Compiled technical assessments and cost analysis for 2 sites
- 3. Sunflower's Holcomb facility assessment underway


Technical Status CO₂ Transportation Assessment

- Modified FE/NETL CO₂ Transport Cost Model
- 7 inputs (e.g., length, pumps, capacity, pressures, etc.)
- 12 outputs, including CapEx and OpEx



	. .	Distance	Distance	Volume	Size	CapEx	Annual
	Scenario	(mi)	(mi) X 1.2	(MII/yr)	(inches)	(\$M)	OpEx (\$M)
Jeffrey to MidCon Trunk	part of 1	151	181	2.5	12"	\$164	\$3.8
Jeffrey to Davis Ranch and John Creek	2	42	51	2.5*	12" & 8"	\$47	\$1.3
Jeffrey to CHS and Pleasant Prairie	3	294	353	3.25**	12"	\$323	\$8.0
Jeffrey to Pleasant Prairie	4	294	353	2.5	12"	\$322	\$7.2

Technical Status Large point-to-point pipeline

Technical Status Large-scale capture, 10 Mt/year

Technical Status White Paper

- Prepared by State CO2-EOR Deployment Work Group
- Critical to passage of 45Q

http://www.betterenergy.org/blog/ca pturing-utilizing-co2-ethanol-addingeconomic-value-jobs-ruraleconomies-communities-reducingemissions/

Capturing and Utilizing CO₂ from Ethanol:

Adding Economic Value and Jobs to Rural Economies and Communities While Reducing Emissions

White paper prepared by the State CO₂-EOR Deployment Work Group

December 2017

Technical Status Legal, Regulatory, & Public Policy

- 1. Key challenges identified & conditions in Kansas defined
- 2. Possible remedies developed
- 3. Plans and strategies for implementation, including development of model statutes (draft complete)
- 4. Identified additional CCS team members & stakeholders

No	Conditions	Remedy	Plan Status	
Statutory framework	vork Overarching challenge		Х	IP
Pore space Ownership - who owns the pore space?		х	Х	IP
	Aggregation or pooling of pore space	Х	Х	IP
Transportation	ROW difficulties	Х	Х	IP
	Class VI well permitting	x	Х	IP
Regulation of Injection & Storage	CO ₂ ownership from emission through capture, transportation, & injection	Х	Х	IP
	Post-closure, long-term liability is costly and a major impediment	х	Х	IP
	Capture	Х	Х	IP
Public acceptance	Transportation			IP
	Injection and storage	Х	Х	IP

Technical Status Remaining work

- Economic analysis of integrated project
 - Implications of 45Q tax credit
- Analysis and comparison with NRAP
- Finalize implementation plan

CO2 price for 6.7% ROR

	Pipeline	Ethanol	Total						
СарХ (\$/Т)	\$17.92	\$7.81	\$25.73						
ОрХ (\$/Т)	\$4.77	\$8.58	\$13.35						
Total (\$/T)	\$22.69	\$16.39	\$39.08						
Total (\$/mcf)	\$1.19	\$0.86	\$2.06						
With 45Q									
Total (\$/T)	\$5.00	\$8.68	\$13.68						
Total (\$/mcf)	\$0.26	\$0.46	\$0.72						

Current CO2 value = \$22.80/tonne (\$1.20/mcf)

Accomplishments to Date

- ✓ Storage site evaluations are complete including alternative storage sites assessments
- ✓ CO_2 source assessments for 2 of 3 sources are complete
 - ✓ Candidate technologies for PCC identified
 - ✓ Sunflower Holcomb plant assessment and capture cost analysis underway
- ✓ FE/NETL CO₂ Transport Cost Model modified and detailed cost estimates for several complicated pipeline scenarios completed
- ✓ Draft model statutes that could pave the way for CO₂ transportation, injection, and storage in Kansas.
- Meetings, meetings, and more meetings with stakeholders to finalize conceptual plans.

Lessons Learned

Non-Technical Negative:

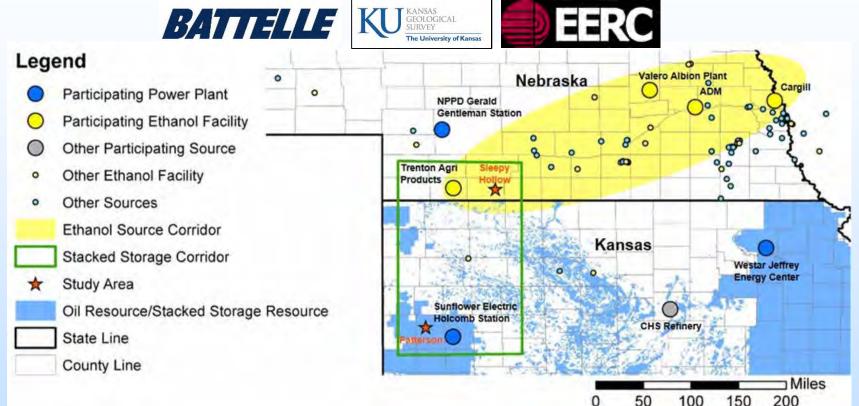
Longevity of coal-based CO₂ sources

- Quickly being replaced by wind and natural gas
- Economic life of plants < than life of capture facility

Technical Negatives:

- Site closest to largest source has insufficient capacity
- Fluid levels/pressure in main disposal zone (Arbuckle) are rising.

Non-Technical Positive:


Alternative ethanol CO₂ sources

- Capture cost << transportation cost
- Concepts gaining traction (e.g., State CO₂ Deployment Work Group and NEORI; CCUS is Kansas forums)
- 45Q expansion

Technical Positives:

- Other saline aquifers (Osage and Viola) that should store 50Mt have been identified in SW Kansas.
- CO₂-EOR storage opportunities

Synergy Opportunities "Midcontinent Stacked Carbon Storage Hub"

		Ethanol			
Agency	NGO/Association	Producer	Electric Utility	Oil Producer	Other
KS Gov. Colyer	Clean Air Task Force	ADM	NPPD	Berexco	ION Engineering
NE Ethanol Board	Great Plains Institute	Cargill	Westar Energy	Merit Energy	MV Purchasing
NE Dept. of Agriculture	Kansas Independent Oil and	Trenton Agri	Sunflower Electric	Great Plains Energy	The Linde Group
	Gas Association	Products	Power		
NE Dept. of Environmental	NE Petroleum Producers	Valero	Kansas City Board of	Casillas Petroleum	
Quality	Association	Renewables	Public Utilities		
NE Corn Board	Renew Kansas	Pacific Eth.		Central Operating	
NE Energy Office					

Project Summary

- ICKan team is identifying and addressing major technical and non-technical challenges of implementing commercial-scale CCS in Kansas
- Reservoir characterization, geologic modeling, and dynamic simulations suggest that western KS sites are suitable for scale of injection
- CO₂ source assessments are being used to identify the most suitable post-combustion capture technologies
- CCS model being evaluated requires substantial transportation infrastructure and various pipeline scenarios are being evaluated, including linkages to upper Midwest ethanol CO₂ source
- Continue to develop strategy to address the challenges and opportunities for commercial-scale CCS in Kansas

Questions?

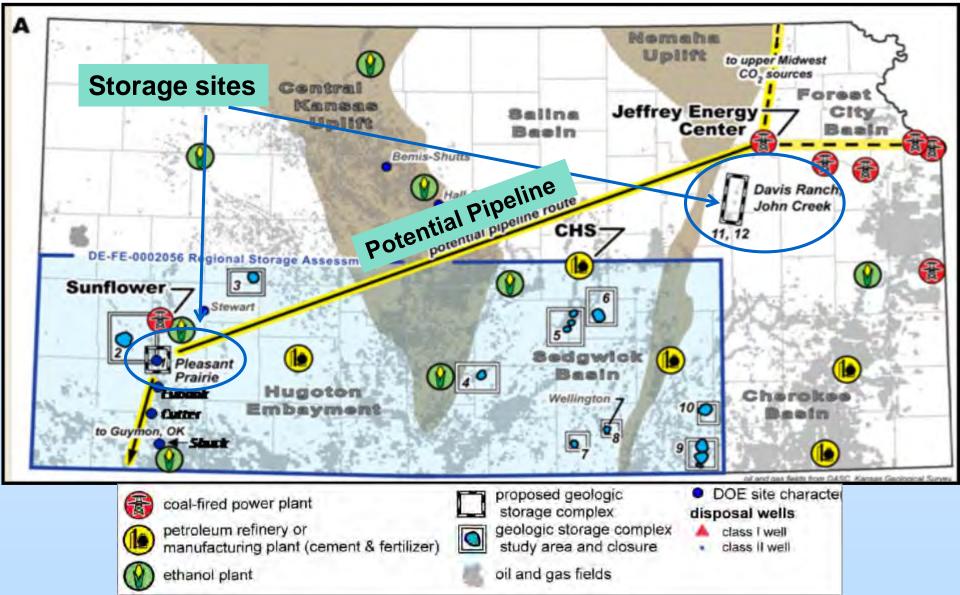
Appendix

Benefit to the Program

DOE Program Goals This Study Goal 1: Develop & validate technologies to ensure 99 % storage permanence, Sub-basinal characterizations **Goal 2**: Develop technologies to improve reservoir storage efficiency while ensuring Testing site screening containment effectiveness tools (i.e., NRAP) **Goal 3**: Support industry's ability to predict CO₂ storage capacity in geologic **Reservoir & simulation** formations to within ±30 % models for geological storage Goal 4: Develop best practices for commercialscale CCS

Benefit Statement

ICKan will address the handling of CO₂ emissions from the source and transport them to the storage site utilizing the combined knowledge and experience of The Linde Group including their own research on post-combustion 2nd Generation CO₂ capture currently sponsored by the DOE, the electrical utilities, refinery, and the latest R&D efforts such as DOE's Carbon Capture Simulation Initiative. The knowledge, experience, and lessons learned by the KGS regarding regional studies, site characterization, monitoring, EPA Class VI permitting, and incorporating NRAP models and tools will be bring best-practices to bear on proving up a commercial-scale carbon storage complex that is safe and dependable. In this Phase I: Integrated CCS Pre-Feasibility Study, ICKan will complete the formation of the CCS Coordination Team who will deliver a plan and strategy to address the technical and nontechnical challenges specific to commercial-scale deployment of a CO₂ storage project utilizing the experience and the expertise of the Team. A development plan will address technical requirements, economic feasibility, and public acceptance of an eventual storage project at the primary source-sink site at Westar Energy's Jeffrey Energy Center. High-level technical evaluations will also be made of sub-basin and potential CO₂ sources utilizing prior experience and methodologies developed previously and for this project. The ICKan and CCS Coordination Team will generate information that will allow DOE to make a determination of the proposed storage complex's level of readiness for additional development under Phase II, based upon the findings for commercial-scale capture, transportation, and storage sites identified as part of this investigation. Information acquired will be shared via the NETL-EDX data portal.

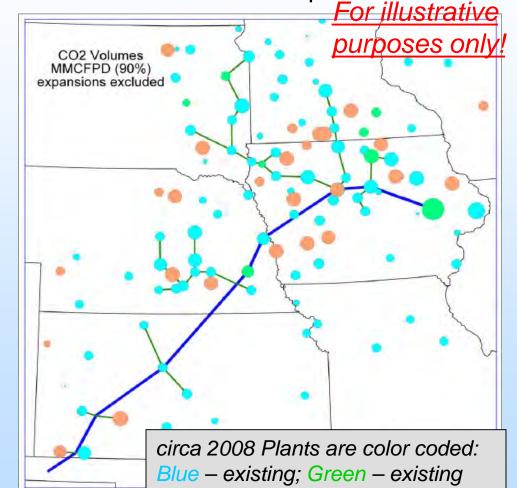

Project Overview: Goals & Objectives

- Identify and address major technical and nontechnical challenges of implementing CO₂ capture and transport and establishing secure geologic storage for CO₂ in Kansas
- Evaluate and develop a plan and strategy to address the challenges and opportunities for commercial-scale CCS in Kansas

Project Overview: Base Case Scenario

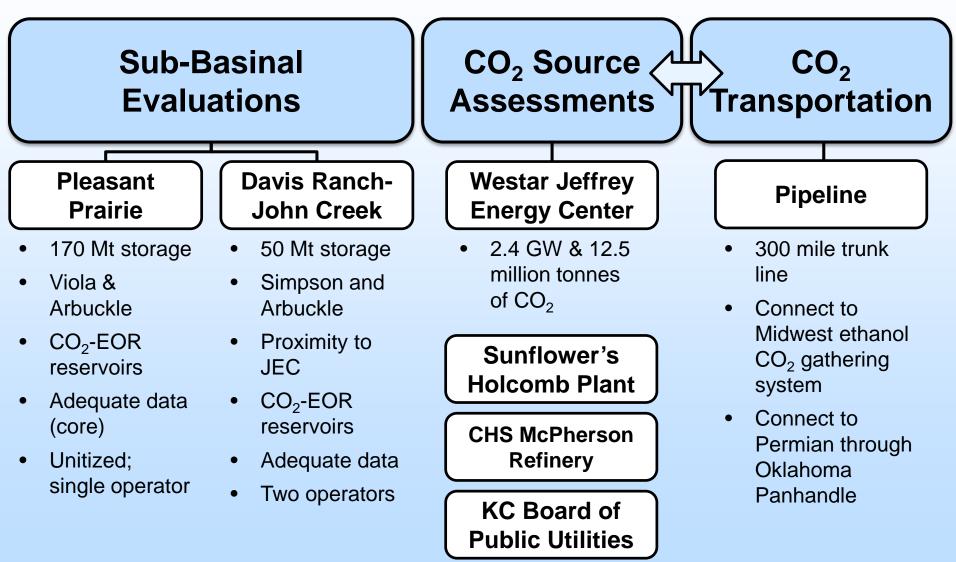
- Capture 50 million tonnes CO₂ from one of three Jeffrey Energy Center's 800 MWe plants over a 20 year period (2.5Mt/yr)
- Compress CO₂ and transport 300 miles to Pleasant Prairie Field in SW Kansas.
 - Alternative: 50 miles to Davis Ranch and John Creek Fields.
- Inject and permanently store 50 million tonnes CO₂ in the Viola Formation and Arbuckle Group

Jeffrey to SW Kansas


Base Case + Ethanol CO₂

Could reduce net cost through scaling and tariffs

- Capture Ethanol CO2
- Build extensive gathering system
- Join trunk line and transport to SW Kansas and possibly to Permian Basin for EOR
- Collect tariffs for transporting Ethanol CO2


January 2008 private study Gathering system connecting 44 ethanol plants


with planned expansions; Orange -

proposed or under construction.

Technical Evaluations

Non-Technical Evaluations

- Capture & transportation economic feasibility (with or w/o ethanol component)
- Financial backing
- Financial assurance under Class VI
- State incentives
- Federal tax policy

- Pore space property rights including force unitization
- CO₂ ownership & liability
- MVA requirements under UIC Class VI
- Varying stakeholder interests
- Right-of-ways
- Utility rate-payer obligations

- Identify stakeholders
- Foster relationships
- Public perception
- Political challenges
- Injection-induced seismicity

Success Criteria

- ✓ CCS Coordination
 Team
- Reservoirs characterized
- ✓ CO2 source assessments
- ✓ CO2 transportation assessment
- ✓ Implementation plan

- Go-No Go decision point in November 2017
- Tied to application for Phase II of CarbonSAFE

Organization: Phase I Research Team

19 team members, 4 subcontractors and KGS staff

Project Management & Coordination, Geological Characterization

<u>Kansas Geological Survey</u> University of Kansas Lawrence, KS

Tandis Bidgoli, PI, Assistant Scientist Lynn Watney, Senior Scientific Fellow Eugene Holubnyak, Research Scientist K. David Newell, Associate Scientist John Doveton, Senior Scientific Fellow Susan Stover, Outreach Manager Mina FazelAlavi, Engineering Research Asst. John Victorine, Research Asst., Programming Jennifer Hollenbah - CO2 Programs Manager Esmail Ansari, Postdoctoral Researcher

Improved Hydrocarbon Recovery, LLC Lawrence, KS Martin Dubois, Joint-PI, Project Manager

CO2 Source Assessments, Capture & Transportation, Economic Feasibility

Linde Group (Americas Division)

Houston, TX

Krish Krishnamurthy, Head of Group R&D Kevin Watts, Dir. O&G Business Development

Energy, Environmental, Regulatory, & Business Law & Contracts

Depew Gillen Rathbun & McInteer, LC

Wichita, KS Christopher Steincamp, Attorney at Law Joseph Schremmer - Attorney at Law

Policy Analysis,

Public Outreach & Acceptance

<u>Great Plains Institute</u> Minneapolis, MN

Brendan Jordan, Vice President Brad Crabtree, V.P. Fossil Energy Jennifer Christensen, Senior Associate Dane McFarlane, Senior Research Analysist

Organization: Phase I Industry Partners

Four CO₂ Sources

CO2 Sources

Westar Energy

Brad Loveless, Exec. Director Environ. Services Dan Wilkus, Director - Air Programs Mark Gettys, Business Manager

Kansas City Board of Public Utilities

Ingrid Seltzer, Director of Environmental Services

Sunflower Electric Power Corporation

Clare Gustin, V.P. Member Services & Ext. Affairs

CHS, Inc. (McPherson Refinery)

Richard K. Leicht, Vice President of Refining Rick Johnson, Vice President of Refining

Regulatory

Kansas Department of Health & Environment

Division of Environment

John W. Mitchell, Director

Bureau of Air

Rick Brunetti, Director

Five Oil & Gas Companies

Kansas Oil & Gas Operators

Blake Production Company, Inc.

(Davis Ranch and John Creek fields)

Austin Vernon, Vice President

Knighton Oil Company, Inc. (John Creek Field) Earl M. Knighton, Jr., President

<u>Casillas Petroleum Corp.</u> (Pleasant Prairie Field)

Chris K. Carson, V.P. Geology and Exploration

<u>Berexco, LLC</u>

(Wellington, Cutter, and other O&G fields) Dana Wreath, Vice President

Stroke of Luck Energy & Exploration, LLC (Leach & Newberry fields)

Ken Walker, Operator

Gantt Chart

			2017				2018												
Task	Task Name	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6
Task 1.0	Project Management & Planning Integrated CCS for Kansas (ICKan)																		
Subtask 1.1	Fulfill requirements for National Environmental Policy Act (NEPA																		
Subtask 1.2	Conduct a kick-off meeting to set expectations																		
Subtask 1.3	Conduct regularly scheduled meetings and update tracking																		
Subtask 1.4	Monitor and control project scope												÷			•			
Subtask 1.5	Monitor and control project schedule																		
Subtask 1.6	Monitor and control project risk																		
Subtask 1.7	Maintain and revise the Data Management Plan including submital of data to NETL-EDX																		
Subtask 1.8	Revisions to the Project Management Plan after submission																		
Task 2.0	Establish a Carbon Capture & Storage (CCS) Coordination Team																		
Subtask 2.1	Identify additional CCS team members																		
Subtask 2.2	Identify additional stakeholders that should be added to the CCS team					_				_									
Subtask 2.3	Recruit & gain commitment of additional CCS team members identified																		
Subtask 2.4	Conduct a formal meeting that includes Phase I team & committed Phase II team members						-												
Task 3.0	Develop a plan to address challenges of a commercial-scale CCS Project																		
Subtask 3.1	Identify challenges & develop a plan to address challenges for CO2 capture from anthropogenic sources																		
Subtask 3.2	Identify challenges & develop a plan to address challenges for CO2 transportation & injection																		
Subtask 3.3	Identify challenges & develop a plan to address challenges for CO2 storage in geologic complexes																		
Task 4.0	Perform high level sub-basinal evaluations using NRAP & related DOE tools																		
Subtask 4.1	Review storage capacity of geologic complexes identified in this proposal & consider alternatives																		
Subtask 4.2	Conduct high-level technical analysis of suitable geologic complexes using NRAP-IAM-CS & other tools for integrated assessment																		
Subtask 4.3	Compare results using NRAP with methods used in prior DOE contracts including regional & subbasin CO2 storage & Class VI permit																		
Subtask 4.4	Develop an implementation plan & strategy for commercial-scale, safe & effective CO2 storage																		
Task Co	Desferre a kisk level (askeisel 000 assess assessment for senters																		
Task 5.0	Perform a high level technical CO2 source assessment for capture			_															
Subtask 5.1	Review current technologies & CO2 sources of team members & nearby sources using NATCARB, Global CO2 Storage Portal, & KDM																		
Subtask 5.2.	Determine novel technologies or approaches for CO2 capture																		
Subtask 5.3	Develop an implementation plan & strategy for cost effective & reliable carbon capture						1		1				_						
Task 6.0	Perform a high level technical assessment for CO2 transportation																		
Subtask 6.1	Review current technologies or CO2 transportation																		
Subtask 6.2	Determine novel technologies or approaches for CO2 capture																		
Subtask 6.3	Develop a plan for cost-efficient & secure transportation infrastructure														÷				
Task 7.0	Technology Transfer																		
Subtask 7.1	Maintain website on KGS server to facilitate effective & efficient interaction of the team						1												
Subtask 7.2	Public presentations																		
Subtask 7.3	Publications																		

Bibliography

- Bidgoli, T.S., Dubois, M., Watney, W.L., Stover, S., Holubnyak, Y., Hollenbach, A., Jennings, J.C., Victorine, J., and Watts, K., 2017, Is commercial-scale CO2 capture and geologic storage a viable enterprise for Kansas?: AAPG Midcontinent Section Meeting, Oklahoma City, OK.
- Hollenbach, A., Bidgoli, T.S., Dubois, M., Holubnyak, Y., and FazelAlavi, M., 2017, Evaluating the Feasibility of CO2 Storage through Reservoir Characterization and Geologic Modeling of the Viola Formation and Arbuckle Group in Kansas: AAPG Midcontinent Section Meeting, Oklahoma City, OK.
- Jennings, J. and Bidgoli, T.S., 2017, Identifying at Risk Areas for Injection-Induced Seismicity through Subsurface of Southern Kansas: AAPG Midcontinent Section Meeting, Oklahoma City, OK.