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Overview of the Scientific Problem

• What fundamental combustion properties/knowledge we need 
in order to design combustor for sCO2 oxy-combustion?
– Kinetics and dynamics
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Conceptual combustors

Fundamental chemical kinetics 
and 

flame dynamics at relevant conditions

A. McClung et al. 2015 UTSR workshop
J.Delimont et al. 2017 UTSR workshop



Kinetic Challenges for sCO2-fuel-O2 Mixtures
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CH4/O2/CO2 ( 9.5%:19%:71.48%)

Deviation increases with pressure: knowledge gap
Kinetic models must be validated at regime of interest

H2/CO/O2/CO2 (14.8%:14.8%:14.8%:55.6%)

×3

@1400K @1200K

?

We know the answer now



Overview of the Scientific Questions and 
Proposed Work

• What is the fundamental kinetic properties?
– Experimental investigation of chemical kinetics for sCO2 Oxy-

combustion (Task 1&2: Ranjan & Sun)

• How can we use the kinetic model to design combustors?
– Development of a compact and optimized chemical kinetic 

mechanism for sCO2 Oxy-combustion (Task 3: Sun)

• What is the combustor dynamics at this new condition?
– theoretical and numerical investigation of combustion instability 

for sCO2 Oxy-combustion (Task 4&5: Lieuwen, Menon)

• What is the new emission property?
– At new operating conditions, should we worry about things we 

didn’t need before? (Task 6: Sun)
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So what?

So what?



Task 1: Development of a High Pressure 
Shock Tube

55

Key features:
• Large internal bore (6 inch or 15.24 cm)
• 69 ft long (~50 ms test time)
• Certified at 376 atm

Diaphragm section
(single or double)

Contoured valve 
for vacuum

Single piece test section
(2.1 m)

• 0.2 µm surface finish 
(electropolishing)

• Optical access

Eight optical windows



Task 1: Development of a High Pressure 
Shock Tube
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• Driven section vacuumed down to 1×10-6 Torr using an Agilent IDP-15 Dry Scroll pump 
and Agilent TwisTorr 304 FS AG turbo pump



Task 1: Development of a High Pressure 
Shock Tube
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First shock in Jan. 2017

March 2016 October 2016

May. 2017



Task 2: Investigation of Natural Gas and Syngas 
Autoignition in sCO2 Environment

• No study before in 
region of interest

• A new regime to 
explore!

• CO2 has negligible 
chemical effect
– Based on 1 to 15 atm

results and simulation 
using GRI 3.0 and 
Aramco 1.3

– GT 17 atm expt. 
Agreed with Aramco 
1.3 using same 
mixture with Hargis et 
al.

8
e.g.:
J.W. Hargis, E.L. Petersen, Energy & Fuels, (29) 2015
S. Vasu, D.F. Davidson, R.K. Hanson, Energy & Fuels, (25) 2011

We are here now
Critical P of CO2



Pressure Traces in CH4/O2/CO2 at 200 bar
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Autoignition Delays at sCO2 condition
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Simulation results from Aramco 2.0, USC Mech II and HP-Mech are close 
to each other, however GRI 3.0 predicts a significantly shorter 

autoignition delay, having approximately a factor of 3 difference

• Pressure: 100±5 bar, and temperature range of 1274 to 1433 K

GRI 3.0 is outlier
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Autoignition Delays of CH4 in Ar
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• Pressure: 95±3 bar, and temperature range of 1248 to 1410 K

No chemical effect from diluent is observed



Autoignition Delays of CH4 in CO2 and Ar
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• Pressure: 200±5 bar, and temperature range of 1137 to 1380 K
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Temperature further distinguishes different kinetic models
- High T kinetics is much simpler than low T kinetics



Chemical Analysis
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• Sensitivity Analysis: perturbing reaction 
rate constant of each reaction, see the 
response of autoignition delay

• CH3+CH3+M=C2H6+M becomes to be 
the most dominant one at high P 
condition

• Different from low pressure conditions, 
H+O2=O+OH is the sixth most 
dominant reaction to enhance ignition

• The third body efficiency of CO2 was investigated by simply doubling its 
value, which has a negligible effect on autoignition, consistent with previous 
work from 1-15 atm

• J.W. Hargis, E.L. Petersen,  Energy & Fuels, (29) 2015
• S. Vasu, D.F. Davidson, R.K. Hanson, Energy & Fuels, (25) 2011

P=100 bar, T=1300 K 
CH4/O2/CO2 mixture (5:10:85)



CH4 Reaction Pathway Analysis
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P=100 bar, T=1300 K 
CH4/O2/CO2 (5:10:85)



CH4 Reaction Pathway Analysis
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• Two reaction pathways
– (1) CH3 oxidation to CH3O
– (2) CH3 recombination to C2H6

• Autoignition determined by ratio of (1)/(2)
• Ratio of (1)/(2): USC II: 0.94; Aramco: 0.95; GRI: 4
• First target for mechanism optimization

The rate constant of
CH3+CH3=C2H6
Determines τig

It is already optimized



CH4 Reaction Pathway Analysis
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ARAMCO 2.0 FFCM1
P=200 bar, T=1200 K 
CH4/O2/CO2 (5:10:85)

CH3

CH3O2

+O2

+CH4

CH3O2H

+CH3

CH3O

CH2O

+OH

Additional pathway of 
CH3 at low temperature

CH3O2 is NOT included in FFCM



Does Real Gas Effect Matter?

• Not here, but it depends…..
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• At high T (away from critical T), real gas behaves like 
ideal gas

• At low T (close to critical T), real gas effect is important

Real gas impacts on ethane profile
C2H6/O2/Ar @ 1300 K

Tang et al., IJCK 2006



Task 3: Development of a Compact and Optimized Chemical 
Kinetic Model for sCO2 Oxy-combustion

• USC II (111 species), Aramco 2.0 (493 species) can’t be 
used in CFD

• 1st step is model reduction
– GPS (http://sun.gatech.edu/download.htm)
– Chem-RC (http://engine.princeton.edu/)
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• A 27 species reduced mechanism1

for natural gas and syngas is 
developed from USC II (still too large 
for CFD)

• A new 13 species model was 
developed with optimization

• Covers 900 K to 1800 K, 100 atm to 300 
atm

• Max 12% deviation

1. S. Coogan, X. Gao, W. Sun, Evaluation of Kinetic Mechanisms for Direct Fired Supercritical Oxy-Combustion of Natural Gas, TurboExpo 2016

CH4/O2/CO2=0.031/0.062/0.907  φ=1

http://sun.gatech.edu/download.htm
http://engine.princeton.edu/


Task 3: Development of a Compact and Optimized Chemical 
Kinetic Model for sCO2 Oxy-combustion
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• A 33 species reduced kinetic model for natural gas and syngas is developed using 
Aramco 2.0 (493 species)

– Number of species is condition dependent: covers 900 K to 1800 K, 150 atm to 300 atm
– Max 10% deviation



Task 6: Emission Properties of sCO2
Oxy-combustion

• It seems pressure does not affect much in kinetics 
because model can predict ignition delays well

• Here comes the problem caused by pressure…

20

CH4 diffusion flame

After 200 bar experiment

From Thar Energy, UTSR workshop 2015



Task 6: Emission Properties of sCO2
Oxy-combustion

• Soot Formation Mechanism in High Pressure CH4
Flame

21

Joo, Peter H., et al. Combustion and Flame 160.10 
(2013): 1990-1998.

CH4/O2 flame

C2H6 C2H4 C2H2 C6 ring  soot

• Conclusion from our work:
• CH3+CH3+M=C2H6+M 

becomes to be the dominant 
at high P condition

• Then C2H6 promotes soot 
formation



Task 6: Emission Properties of sCO2
Oxy-combustion

• Analysis of deposits from shock tube experiments

Preliminary results:
• Composition: C/O≈3/1 (typical value owing to partial 

oxidation)
• Chemical bond: C-C or C=C (~60%); C-O (~36%)
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Carbon and oxygen scan



Recap of kinetic investigation

– GRI 3.0 fails at high pressure
• It is compact and has NOx module included, but it does 

not work at high pressure (P>100 bar)
– Aramco 2.0 agrees with experiments very well 

through the temperature range of tests. HP-Mech
works too.

– FFCM-1, USC II work well at high temperature 
region (T>~1200 K), but their predictions deviate 
with experiments when T<~1200 K because of the 
missing CH3O2 kinetics

– CO2 has no chemical effect on ignition kinetics
– Significant particulate formation observed at high P, 

probably owing to partial oxidation (study ongoing)
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Task 5: LES Studies of Supercritical Mixing and 
Combustion 
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• Mixing and flame stability
• Systematic variation of design parameters

– Momentum ratios for fuel and oxygen, flow rate, number of sets
– Size, spacing, and locations of injectors

• Computational modeling may be more cost effective but include its
own challenges
– Kinetics
– Turbulence-chemistry closure
– Real gas effects

Baseline model
NOT actual design



Task 5: LES Studies of Supercritical Mixing 
and Combustion 
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• Autoignition close to predicted location based
on mixing

• Autoignition occurs slightly downstream of the
oxidizer jet towards lean side

• Autoignition with lifted flame structure

Vorticity magnitude colored 
by temperatureTemperature iso-surface (2100 K, 1500 K)

Autoignition

Instantaneous Reacting Flow Features



Instantaneous Reacting Flow Features
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Schlieren Temperature 

• Large density gradient (Schlieren: log of density gradient)
• Mixing of fuel and oxidizer followed by ignition in lifted regions
• Autoignition in hot kernels where fuel mixes with oxidizer

– Finite-size kernel but no continuous flame structure
• Autoignition sensitive to many parameters: mixing time, kinetics, local

scalar dissipation rate, etc.



Autoignition and Blow out
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• Possible upstream influence of acoustic waves



Real Gas Effect
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• Reduced jet penetration with perfect gas EOS in comparison to Peng
Robinson EoS – clearly shows RG effects

• Heat release also decreased with perfect gas EOS

Real gas EOS Perfect gas EOS



Flame Length and Combustion Efficiency
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• Combustion is not efficient
• Combustion efficiency estimated as:

𝜂𝜂 = 100 ×
�̇�𝑚𝑓𝑓,𝑖𝑖𝑖𝑖 − �̇�𝑚𝑓𝑓,𝑜𝑜𝑜𝑜𝑜𝑜

�̇�𝑚𝑓𝑓,𝑖𝑖𝑖𝑖
~ 49%

• Flame length, Lf ~ 14.5 Dox

– estimated as intersection of Z = Zst
and T = 1500 K

• 𝜂𝜂 needs to be improved
– Inflow realistic turbulence
– Modify J and jet spacing
– Mass flow rate changes
– Jet-staging and distributed mixing
– Inflow swirling

• Mixing is the key
• Use network modeling for rapid

assessment

Lf

Temperature overlaid with stoichiometry line



Chemical Reactor Network (CRN) Modeling

• A viable computationally affordable alternative for parameter study
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• A two-stage premixed combustion device 
– where the fuel/air mixture is split across primary and secondary combustion zones

• Setup essentially is reacting jet in a hot crossflow
• CRN model: 2 PSRs and 1 PFR for each of the combustion zone 

Axially staged premixed combustion 
device [Ahrens et al. (2014)]

CRN Model



Effect of Staging on CO Emissions
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• Effect of number of stages on temperature and concentration of 
CO and CO2 is examined

• With increase in number of stages, CO emission tends to reduce, 
which is consistent with experimental studies

Multi-staging



Task 4: Analytical modeling of Supercritical 
Reacting Jets in Crossflow

• Analytical framework for 
reacting jets in cross-flow
– connect flow dynamics to flame 

dynamics
– Modeling explicit flame position 

dynamics
– Modeling spatially integrated 

heat release dynamics as a 
function of flame position

• Understanding flow dynamics 
of a jet in cross-flow
– provide key inputs to the velocity 

field used in the analytical model

32

Analytic model of jet in crossflow

CFD with large kinetics is pain…



Non-premixed Flame Position Dynamics
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• Task outcome: PDE for 
flame position 
fluctuations & solution

• Wrinkle convection
– Flow based convection 

of flame “wrinkles”
• Reactive nature of 

wrinkle generation
– From diffusion based 

physics that drives the 
mean flame position

• Local flow fluctuations 
serve as source of 
“wrinkles” (RHS)

• Governing Physics in solution
– Time history of local disturbances
– Disturbances convected from inlet

• Allows comparative analysis 
with premixed flames for both 
laminar and turbulent 
framework



Understanding JICF from Measurements
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• Focus: Shear layer vortices (SLV)
– leading-edge and lee-side
– SLV behavior contributes to near-field 

and pre flame entrainment and mixing
– SLV rollup and distort to form the 

CVP, major topological feature which 
governs mixing

• Use measured data from JICF 
experiments to characterize SLV
– Stereo PIV flow measurements
– OH-PLIF flame measurements
– Compare reacting and non-reacting 

cases for JICF SLV behavior



JICF Stability – Representative Results
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Non-reacting cases
J = 5, S= 1.0

J = 25, S = 1.0

Reacting cases

Reacting cases which 
should show globally 
unstable behavior based on 
S and J show convectively 
unstable SLV structure

Suppressed SLV behavior

J = 5, S = 1.0

J = 5, S = 0.4

Factors that govern SLV 
behavior:
• Jet momentum flux ratio, 

𝐽𝐽 =
ρ𝑗𝑗𝑢𝑢𝑗𝑗

2

ρ∞𝑢𝑢∞2

• Jet to crossflow density 
ratio, S = ρ𝑗𝑗

ρ∞

Globally unstable 
behavior
• Global jet 

oscillations
• SLV formed 

near jet exit

Convectively 
unstable behavior
• Suppressed 

SLV formation
• Vortex 

growth/pairing

Flame weakens mixing



Summary of Accomplishments
• High pressure shock tube developed and commissioned

• IDT measurements at relevant conditions validated kinetic 
models

• Reduced/optimized kinetic models developed and 
implemented in CFD

• Theoretical framework developed for JICF

• LES framework and investigation of JICF

• Recommendation on combustor design: 
– Mixing is critical and challenging: efficiency & emissions (watch 

out!)

– Low T region is challenging both physically and chemically

36
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Thank you! & Questions?

Acknowledgement: 
UTSR Project: DE-FE0025174; PM: Seth Lawson



Challenges of Experiments at sCO2
Condition
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• Large Cp of CO2
– Strong shock needed for CO2

• BL is much thicker with CO2
– Non-ideal effect

• ID of shock tube must be large
– 150 mm
– High experimental cost

J. Hargis & E. Peterson, E&F, 2015
K. Grogan & M. Ihme, PROCI, 2016

CH4 in CO2



Shock Tube Development
- mixture preparation system
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High accuracy Baratrons (0.05%) to measure partial 
pressure for mixture preparation

MicroGC to monitor 
compositions

Magnetic stir to promote mixing

Turbo molecular 
pump



Signal from End wall Needed
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Vapor-Liquid Equilibrium in Supercritical 
Mixtures

42

Sub-critical jet

Super-critical jet

• Single species: the phase is uniquely 
defined by the equilibrium diagram

• Subcritical regime: jet exhibits 
atomization, droplets, and sharp 
gas/liquid interface

• Supercritical regime: Interface is 
diffused and no droplet formation

• Mixtures: VLE exists at interface for 
given (𝑝𝑝, 𝑇𝑇) and composition 𝑧𝑧𝑖𝑖. 

• JICF can have local VLE regions in
• CH4-CO2, O2-CO2 interfaces
• CH4-O2-CO2-H2O regions

• Critical properties of each component 
play a crucial role to determine VLE 

• Need to include VLE effects to 
account for mixture effects
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