Investigation of Autoignition and Combustion Stability of High Pressure Supercritical Carbon Dioxide Oxycombustion

PI: Wenting Sun

Co-PI: Devesh Ranjan, Tim Lieuwen, and Suresh Menon

School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332

Performance period: Oct. 2015 – Mar. 2019

UTSR Project: DE-FE0025174 PM: Seth Lawson 2018 UTSR Project Review Meeting

Overview of the Scientific Problem

- What fundamental combustion properties/knowledge we need in order to design combustor for sCO₂ oxy-combustion?
 - Kinetics and dynamics

<u>Fundamental chemical kinetics</u> and <u>flame dynamics at relevant conditions</u>

Conceptual combustors

Kinetic Challenges for sCO₂-fuel-O₂ Mixtures

Deviation increases with pressure: knowledge gap Kinetic models must be validated at regime of interest

We know the answer now

Overview of the Scientific Questions and Proposed Work

- What is the fundamental kinetic properties?
 - Experimental investigation of chemical kinetics for sCO₂ Oxycombustion (Task 1&2: Ranjan & Sun)
 So what?
- How can we use the kinetic model to design combustors?
 - Development of a compact and optimized chemical kinetic mechanism for sCO₂ Oxy-combustion (Task 3: Sun)
 So what?
- What is the combustor dynamics at this new condition?
 - theoretical and numerical investigation of combustion instability for sCO₂ Oxy-combustion (Task 4&5: Lieuwen, Menon)
- What is the new emission property?
 - At new operating conditions, should we worry about things we didn't need before? (Task 6: Sun)

Task 1: Development of a High Pressure Shock Tube

Task 1: Development of a High Pressure Shock Tube

 Driven section vacuumed down to 1×10⁻⁶ Torr using an Agilent IDP-15 Dry Scroll pump and Agilent TwisTorr 304 FS AG turbo pump

Task 1: Development of a High Pressure Shock Tube

Time (ms)

Task 2: Investigation of Natural Gas and Syngas Autoignition in sCO₂ Environment

- No study before in region of interest
- A new regime to explore!
- CO₂ has negligible chemical effect

e.g.:

- Based on 1 to 15 atm results and simulation using GRI 3.0 and Aramco 1.3
- GT 17 atm expt.
 Agreed with Aramco
 1.3 using same
 mixture with Hargis et al.

J.W. Hargis, E.L. Petersen, Energy & Fuels, (29) 2015

Pressure Traces in $CH_4/O_2/CO_2$ at 200 bar

Autoignition Delays at sCO₂ condition

• Pressure: 100±5 bar, and temperature range of 1274 to 1433 K

Simulation results from Aramco 2.0, USC Mech II and HP-Mech are close to each other, however GRI 3.0 predicts a significantly shorter autoignition delay, having approximately a **factor of 3 difference**

Autoignition Delays of CH₄ in Ar

• Pressure: 95±3 bar, and temperature range of 1248 to 1410 K

No chemical effect from diluent is observed

Autoignition Delays of CH₄ in CO₂ and Ar

• Pressure: 200±5 bar, and temperature range of 1137 to 1380 K

Temperature further distinguishes different kinetic models - High T kinetics is much simpler than low T kinetics

Chemical Analysis

- CH₃+CH₃+M=C₂H₆+M becomes to be the most dominant one at high P condition
- Different from low pressure conditions, H+O₂=O+OH is the sixth most dominant reaction to enhance ignition

P=100 bar, T=1300 K CH₄/O₂/CO₂ mixture (5:10:85)

- The third body efficiency of CO₂ was investigated by simply doubling its value, which has a negligible effect on autoignition, consistent with previous work from 1-15 atm
 - J.W. Hargis, E.L. Petersen, Energy & Fuels, (29) 2015
 - S. Vasu, D.F. Davidson, R.K. Hanson, Energy & Fuels, (25) 2011

CH₄ Reaction Pathway Analysis

- Two reaction pathways
 - (1) CH_3 oxidation to CH_3O
 - (2) CH_3 recombination to C_2H_6
- Autoignition determined by ratio of (1)/(2)
- Ratio of (1)/(2): USC II: 0.94; Aramco: 0.95; GRI: 4
- First target for mechanism optimization

CH₄ Reaction Pathway Analysis

Does Real Gas Effect Matter?

• Not here, but it depends.....

Real gas impacts on ethane profile $C_2H_6/O_2/Ar @ 1300 K$

- At high T (away from critical T), real gas behaves like ideal gas
- At low T (close to critical T), real gas effect is important

Task 3: Development of a Compact and Optimized Chemical Kinetic Model for sCO₂ Oxy-combustion

- USC II (111 species), Aramco 2.0 (493 species) can't be used in CFD
- 1st step is model reduction
 - GPS (<u>http://sun.gatech.edu/download.htm</u>)
 - Chem-RC (<u>http://engine.princeton.edu/</u>)
- A 27 species reduced mechanism¹ for natural gas and syngas is developed from USC II (<u>still too large</u> <u>for CFD</u>)
- A new 13 species model was developed with optimization
 - Covers 900 K to 1800 K, 100 atm to 300 atm
 - Max 12% deviation

1. S. Coogan, X. Gao, W. Sun, Evaluation of Kinetic Mechanisms for Direct Fired Supercritical Oxy-Combustion of Natural Gas, TurboExpo 2016

Task 3: Development of a Compact and Optimized Chemical Kinetic Model for sCO₂ Oxy-combustion

- Number of species is condition dependent: covers 900 K to 1800 K, 150 atm to 300 atm
- Max 10% deviation

Autoignition Delay Times at Constant Pressure Autoignition Delay Times at Constant Pressure $(P_0 = 300.0 \text{ atm}, H_2/CO/O_2/CO_2 = 10.0/10.0/10.0/70.0, \phi = 1.0)$ $(P_0 = 300.0 \text{ atm}, CH_4/O_2/CO_2 = 10.0/20.0/70.0, \phi = 1.0)$ Temperature (T_0, K) Temperature (T_0, K) 1400 1300 1200 1100 900 1000 1400 1300 900 1200 1100 1000 Aramco 2 Aramco 2 10^{-2} Aramco 2: 33 species Aramco 2: 33 species Autoignition Delay Time (τ_{ign} , s) Autoignition Delay Time (τ_{ign}, s) 10-3 10^{-3} 10^{-4} 10^{-4} 10^{-5} 8.5 9.0 9.5 10.0 10.5 11.0 7.0 7.5 8.0 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 10000/Temperature $(10^4/T_0, K^{-1})$ 10000/Temperature ($10^4/T_0, K^{-1}$)

Task 6: Emission Properties of sCO₂ Oxy-combustion

- It seems pressure does not affect much in kinetics because model can predict ignition delays well
- Here comes the problem caused by pressure...

Task 6: Emission Properties of sCO₂ Oxy-combustion

 Soot Formation Mechanism in High Pressure CH₄ Flame

Joo, Peter H., et al. *Combustion and Flame* 160.10 (2013): 1990-1998.

- Conclusion from our work:
- CH₃+CH₃+M=C₂H₆+M becomes to be the dominant at high P condition

 $C_2H_6 \rightarrow C_2H_4 \rightarrow C_2H_2 \rightarrow C_6 ring \rightarrow soot$

 Then C₂H₆ promotes soot formation

Task 6: Emission Properties of sCO₂ Oxy-combustion

• Analysis of deposits from shock tube experiments

Preliminary results:

- Composition: C/O≈3/1 (typical value owing to partial oxidation)
- Chemical bond: C-C or C=C (~60%); C-O (~36%)

Recap of kinetic investigation

- GRI 3.0 fails at high pressure
 - It is compact and has NOx module included, but it does not work at high pressure (P>100 bar)
- Aramco 2.0 agrees with experiments very well through the temperature range of tests. HP-Mech works too.
- FFCM-1, USC II work well at high temperature region (T>~1200 K), but their predictions deviate with experiments when T<~1200 K because of the missing CH₃O₂ kinetics
- CO₂ has no chemical effect on <u>ignition</u> kinetics
- Significant particulate formation observed at high P, probably owing to partial oxidation (study ongoing)

Task 5: LES Studies of Supercritical Mixing and Combustion

Baseline model <u>NOT</u> actual design

- <u>Mixing</u> and flame stability
- Systematic variation of design parameters
 - Momentum ratios for fuel and oxygen, flow rate, number of sets
 - Size, spacing, and locations of injectors
- Computational modeling may be more cost effective but include its own challenges
 - Kinetics
 - Turbulence-chemistry closure
 - Real gas effects

Task 5: LES Studies of Supercritical Mixing and Combustion

Instantaneous Reacting Flow Features

- Autoignition close to predicted location based on mixing
- Autoignition occurs slightly downstream of the oxidizer jet towards lean side
- Autoignition with lifted flame structure

Temperature iso-surface (2100 K, 1500 K)

Vorticity magnitude colored by temperature

Instantaneous Reacting Flow Features

- Large density gradient (Schlieren: log of density gradient)
- Mixing of fuel and oxidizer followed by ignition in lifted regions
- Autoignition in hot kernels where fuel mixes with oxidizer
 - Finite-size kernel but no continuous flame structure
- Autoignition sensitive to many parameters: mixing time, kinetics, local scalar dissipation rate, etc. 26

Autoignition and Blow out

• Possible upstream influence of acoustic waves

Real Gas Effect

- Reduced jet penetration with perfect gas EOS in comparison to Peng Robinson EoS – clearly shows RG effects
- Heat release also decreased with perfect gas EOS

Flame Length and Combustion Efficiency

• Combustion is not efficient

• Combustion efficiency estimated as:

$$\eta = 100 \times \frac{\dot{m}_{f,in} - \dot{m}_{f,out}}{\dot{m}_{f,in}} \sim 49\%$$

- Flame length, $L_f \sim 14.5 D_{ox}$
 - estimated as intersection of Z = Z_{st} and T = 1500 K
- η needs to be improved
 - Inflow realistic turbulence
 - Modify J and jet spacing
 - Mass flow rate changes
 - Jet-staging and distributed mixing
 - Inflow swirling
- Mixing is the key
- Use network modeling for rapid assessment

Temperature overlaid with stoichiometry line

Chemical Reactor Network (CRN) Modeling

• A viable computationally affordable alternative for parameter study

device [Ahrens et al. (2014)]

- A two-stage premixed combustion device
 - where the fuel/air mixture is split across primary and secondary combustion zones
- Setup essentially is reacting jet in a hot crossflow
- CRN model: 2 PSRs and 1 PFR for each of the combustion zone

Effect of Staging on CO Emissions

- Effect of number of stages on temperature and concentration of CO and CO₂ is examined
- With increase in number of stages, CO emission tends to reduce, which is consistent with experimental studies

Task 4: Analytical modeling of Supercritical Reacting Jets in Crossflow

- Analytical framework for reacting jets in cross-flow
 - connect flow dynamics to flame dynamics
 - Modeling explicit flame position dynamics
 - Modeling spatially integrated heat release dynamics as a function of flame position
- Understanding flow dynamics of a jet in cross-flow
 - provide key inputs to the velocity field used in the analytical model

CFD with large kinetics is pain...

Analytic model of jet in crossflow

Non-premixed Flame Position Dynamics

- Task outcome: PDE for flame position fluctuations & solution
- Wrinkle convection
 - Flow based convection of flame "wrinkles"
- Reactive nature of wrinkle generation
 - From diffusion based physics that drives the mean flame position
- Local flow fluctuations serve as source of "wrinkles" (RHS)

$$\frac{\partial \xi_{1,n}}{\partial t} + u_{x,0} \frac{\partial \xi_{1,n}}{\partial x} - u_{x,0} \left(\frac{d^2 \xi_0}{dx^2} \right) \left\{ \frac{d \xi_0}{dx} \left(1 + \left(\frac{d \xi_0}{dx} \right)^2 \right) \right\} \right\} \xi_{1,n}$$
$$= -u_{x,1} \left(\frac{d \xi_0}{dx} \right) \left(1 + \left(\frac{d \xi_0}{dx} \right)^2 \right) \right\}$$

$$\xi_{1,n}(x,t) = \int_{0}^{t} u_{n,1}(x,t') dt' - \int_{0}^{t-\frac{x}{u_{x,0}}} u_{n,1}(0,t') dt'$$

- Governing Physics in solution
 - Time history of local disturbances
 - Disturbances convected from inlet
- Allows comparative analysis with premixed flames for both laminar and turbulent framework

Understanding JICF from Measurements

- Focus: Shear layer vortices (SLV)
 - leading-edge and lee-side
 - SLV behavior contributes to near-field and pre flame entrainment and mixing
 - SLV rollup and distort to form the CVP, major topological feature which governs mixing
- Use measured data from JICF
 experiments to characterize SLV
 - Stereo PIV flow measurements
 - OH-PLIF flame measurements
 - Compare reacting and non-reacting cases for JICF SLV behavior

JICF Stability – Representative Results

Summary of Accomplishments

- High pressure shock tube developed and commissioned
- IDT measurements at relevant conditions validated kinetic models
- Reduced/optimized kinetic models developed and implemented in CFD
- Theoretical framework developed for JICF
- LES framework and investigation of JICF
- Recommendation on combustor design:
 - Mixing is critical and challenging: efficiency & emissions (watch out!)
 - Low T region is challenging both physically and chemically

Thank you! & Questions?

Acknowledgement: UTSR Project: DE-FE0025174; PM: Seth Lawson 37

Challenges of Experiments at sCO₂ Condition

- Large C_p of CO₂
 - Strong shock needed for CO₂
- BL is much thicker with CO₂
 - Non-ideal effect
- ID of shock tube must be large
 - 150 mm
 - High experimental cost

Shock Tube Development - mixture preparation system

High accuracy Baratrons (0.05%) to measure partial pressure for mixture preparation

Magnetic stir to promote mixing

Signal from End wall Needed

Simultaneous sidewall and end wall traces and emissions Small difference between end wall and sidewall signals: "good chance" as quasi-homogeneous ignition event

Vapor-Liquid Equilibrium in Supercritical Mixtures

- Single species: the phase is uniquely defined by the equilibrium diagram
- Subcritical regime: jet exhibits atomization, droplets, and sharp gas/liquid interface
- Supercritical regime: Interface is diffused and no droplet formation
- Mixtures: VLE exists at interface for given (*p*, *T*) and composition *z*_{*i*}.
- JICF can have local VLE regions in
 - CH₄-CO₂, O₂-CO₂ interfaces
 - CH₄-O₂-CO₂-H₂O regions
- Critical properties of each component play a crucial role to determine VLE
- Need to include VLE effects to account for mixture effects

