FEW0225: High-efficiency, integrated reactors for sorbents, solvents, and membranes using additive manufacturing

NETL Carbon Capture Technology Program Review August 27, 2019

Joshuah K. Stolaroff

Goal: more efficient, lower cost reactors for CO₂ capture.

We focus on three design features:

Triply Periodic Minimal Surface (gyroid-like) structures

Hierarchical flow channels

Multifunctional Reactors

Project Plan

FEW0225: \$3.8M over 4 years

	Year 1	Year 2	Year 3	Year 4
Theoretical Assessment		wnselect		
Fabrication Assessment	□ Pro	of of concept reactor		
Generation 1 Reactor		Design→	🛘 1st-gen design 💛 Prototype dem	0>
Generation 2 Reactor			Design→ Bench-	scale test Demo design

- 10 tasks in 3 tracks
- Downselect to two reactor concepts, developed in series
- Tech transfer targeted for middle of Year 4 for 1st-gen design

TPMS geometries enhance fluid mixing

Temperature in Cold Fluid in Countercurrent Heat Exchanger

Schwarz-D

We have confirmed the case for TPMS heat exchangers with simulations and measurements.

Heat transferred vs. flowrate for TPMS and printed circuit heat exchangers

Many reactor configurations possible with TPMS Heat Exchange and additive manufacturing.

Gas Separation Membrane

Gas Absorption Monolith w/ Heat Exchange

Sorbent

Support

TPMS membrane reactors show theoretical promise

Predicted mass transfer coefficients for silicone membrane reactor

Experimental results slight better than expected for the wall thickness.

Desired feature sizes are technically achievable.

But part-scale fabrication is currently challenging.

Mass transfer simulations inform TPMS reactor design.

- Geometric properties
 - Void volume per unit cell
 - Surface area per unit cell
 - Hydraulic diameter
- Flow properties
 - Friction factor
- Mass transfer properties
 - Sherwood number

Mass transfer simulation

Periodic boundary conditions in all other directions

Pressure drop for a Schwarz D unit cell is about twice that of a pipe (for the same flow rate and hydraulic diameter).

Mass transfer rate improves with liquid velocity faster than for a pipe.

Sherwood number (convective mass transfer / diffusive mass transfer) vs Reynolds number

Energy efficiency favors small cell sizes and low velocities

Liquid-side pressure drop in absorber sized for 80% approach to equilibrium

Capital cost favors small cell sizes and high velocities.

Required reactor material per unit CO₂ captured

Printed plastic packings allow TPMS geometries, integrated heat exchange.

Conventional Stainless Steel Packing

Same geometry in ABS

For printed packings, plastic is ~10X cheaper than stainless steel.

Several printable polymers show promising compatibility.

Material testing @ 48 hours, 100°C in neat 1-amino-2-propanol

Nylon is current leading candidate.

Polymer	Condition @ 48 hr 100C	Condition @ 1000 hr 25C
ABS	Deformed	Stable
Copolyester	Dissolved	Stable
High Impact Polystyrene	Deformed	Stable
Nylon	Stable	Stable
Polycarbonate	Dissolved	Dissolved
Polylactic Acid	Dissolved	Degraded
Polystyrene	Deformed	Stable

Prints in multiple materials have been demonstrated.

ABS

High-Density Polyethylene

Polycarbonate

ABS

Models suggest how solvent properties affect absorber size.

Certain geometries may be favored for particular solvent properties (e.g. viscosity).

Hydrophobic stripper packings can speed CO₂ release in polarity-swing solvents

CO₂ desorption kinetics of Koechanol in the presence of various solid antisolvents, when mixture is suddenly heated from 40 to 80 °C.

Conclusions

- TPMS membrane reactors show theoretical promise, but need new material or fabrication strategy.
- For single phase flow, smaller feature sizes are better (to the limits of fabrication).
- Printed plastic packings are viable in terms of materials.
 - Geometry needs to be optimized and compared with conventional packings.
- Hydrophobic surfaces in the stripper are promising for polarity-swing solvents.

Project Team

Joshuah K. Stolaroff, Du Nguyen, Pratanu Roy, Jaisree Iyer, Julie Mancini, Simon Pang, Samantha Ruelas, Matthew Worthington, William Smith, Sarah E. Baker

Acknowledgements

Andy Aurelio Lynn Brickett

