LES of oxy-fuel combustion for sCO2 power cycles

PI: Lee Shunn (shunn@cascadetech.com) Award: DE-SC0017230

2018 UTSR Project Review Meeting

Project personnel

- Cascade Technologies
 - Combustion: Lee Shunn (PI)
 - Real-fluid CFD: Daniel Banuti*
 - Numerical Analysis: Sanjeeb Bose
- Consultants
 - Javier Urzay, Stanford CTR
 - Subith Vasu, UCF
- Acknowledgements
 - Jacob Delimont, SwRI
 - Mark Freeman, NETL

Project overview

- Objective: Develop numerical methods and CFD models for oxyfuel combustion in direct-fired sCO2 power systems
- Phase I (Mar 2017-Feb 2018)
 - Proof-of-concept for CFD "building blocks" (i.e. real-fluid thermodynamics, numerical methods, combustion models)
- Phase II (Jun 2018-May 2020)
 - Put all the pieces together from phase-I
 - Demonstrate utility for scientific discovery and design exploration in practical sCO2 systems

Direct-fired sCO2 cycle - Allam cycle

- Closed sCO2 loop
- Increased efficiency
- Small footprint
- Heat added by direct combustion (e.g. CH4+O2)
- Ideally, products in stoichiometric combustion (H2O, CO2) can be easily removed

Delimont 2017

SwRI sCO2 concept combustor

OBJECTIVE: Examine sensitivity of LES results to various chemical mechanisms

combustor	equivalence	mixture	pure CO ₂	80:20 CO ₂ :O ₂
stage	ratio	fraction	@T=973 K	@T=962 K
post-injection	1.0	0.047059	2349.5 K	2349.5 K
post-effusion	0.45	0.021918	1671.8 K	1675.7 K
post-dilution	0.25	0.012306	1380.8 K	1380.7 K

Chemical mechanisms

mechanism	# species	# rxns	max PLOG	comments
Aramco-1.3	253	1542	100 atm	(C1-C4) Curran et al. 2013
Aramco-2.0	73	426	1000 atm	(C1-C2) Curran et al. 2017
HP-mech	92	615	1e+5 atm	Ju et al. 2017
GRI-3.0	53	325	none	Gas Research Institute
UCF-23	23	142	none	Reduced from Aramco-2.0
USC-II	111	784	none	Wang et al. 2007

FPV combustion model

Step 2: Define a reaction progress variable and map flamelets to (Z, C)

Step 3: Assume PDF closure for SGS turbulence-chemistry interactions

Flamelet s-curve (IG EOS)

Real-gas effects

 $\chi_{\rm st}$ = 100 s⁻¹ chem: UCF-23

Given the mild real-gas effects in this problem, we will continue with IG EOS for this analysis

CHARLES[™] suite of LES tools

Developed and licensed by Cascade Technologies

- Compressible FV Navier-Stokes formulation
- Flamelet-based combustion models
- Massively-parallel communication and I/O
- Numerical method
 - 2nd-order low-dissipation gradient operators
 - 3rd-order explicit time advancement
 - "KEEP" entropy-stable flux discretization

Stability using physics, not dissipation!

Kinetic energy, entropy preserving (KEEP) schemes

- Discrete entropy framework used to develop low dissipation fluxes has been generalized to treat a variety of flow regimes (e.g., high speed flows, reacting flows, real gas effects)
- Leads to a stable, homogenous flux discretization without complex sensors, upwinding hybridization, or tuning of coefficients for stability

Stability conditions based on discrete satisfaction of Gibbs-Duhem condition (2nd law of thermodynamics)

$$d(\rho s) = \frac{1}{T} d(\rho E) - \frac{u}{T} d(\rho u) + \left(s + \frac{u^2}{2T} - \frac{h}{T}\right) d\rho$$
$$\Delta w_i f_i + \Delta(\rho u) = 0; w_i = \nabla_{\phi}(\rho s)$$

KEEP schemes drastically improve solution quality and numerical stability Example: Premixed combustion in industrial multi-element combustor

System level LES calculations necessarily result in coarsely resolved structures

- KEEP schemes improve accuracy (e.g., flame length consistent with experiments)
- Simulations are more robust and less sensitive to mesh resolution and transitions

Not all LES are equal!

Sandia D LES flame comparison: >10X cost reductions from better numerics and modeling

"Coarse" LES mesh 1.1M Voronoi CVs

case: Aramco-2.0 movie duration: 30 ms

Mixture Fraction 0.0-0.1

Temperature 400-2400 K

Temperature 400-2400 K

X = 8 in

X = 5 in

case: Aramco-2.0

"Flux probe" setup (massflow-weighted variables @ 100 axial cross-sections)

0123456.

95 96 97 98 99

"Flux probe" example (CO flux-probe at combustor exit: x = 10")

Axial profiles (cross-section mass-avg)

Combustion products and emissions (cross-section mass-avg)

Flamelet s-curve (revisited for CO)

Flamelet s-curve (revisited for CO)

Radial profiles (near injector)

PDF evolution (near injector)

PDF evolution (downstream)

Conclusions

- Computational results are affected to the underlying chemical mechanism
- This is particularly true to sensitive species (e.g. CO)
- Interactions between kinetics and flow scales can be subtle
- These chemical uncertainties seem to be much larger than assumptions about ideal gas vs real fluid behavior (at least for these conditions)
- Use reduced mechanisms with caution

CASCADE TECHNOLOGIES

Discovery through simulation