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Mineral Scaling in Stimulated Rock Volume

• Low Recovery in Unconventional 
Gas/Oil
-Gas: < 25%
-Oil: < 10%

• Mineral scaling is a major problem
-Mineral scaling occurs on 

multiple spatial scales
-Large spatial range
-Several forms (barite, iron, 

halides, gypsum)
• Reduced production and 

permanent formation damage
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Barite: one of most important scale minerals

Barium ubiquitous in hydraulic fracturing systems
• > 1 g/kg oil/gas shales
• Generally supersaturated in flowback (e.g., Dieterich Fuel 2016)

Low solubility (Ksp = 10-9.34) 

Numerous sources of Ba:
• Ba-infused drilling mud (> 10 g/kg)
• Shale (> 1 g/kg): Barite, witherite, clays 

(Renock, Appl. Geochem. 2016)
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Geochemistry?

• Geochemistry controls permeability
permeability (under explored)
• Dissolution (general): means to increase permeability, and to initiate 

massive chemical reactions
• Precipitation (general): carbonates, sulfates, iron-bearing minerals 

oxides
• Ppt reduces permeability by occluding fracture apertures and by 

coating fracture surfaces
• Fe redox: can be driven by  DO and pH changes

Technical progress



Major Questions Regarding Ba-scale

• Where is the majority of Ba coming 
from?

• What are the major reactions that affect 
Ba release?

• How is the rate and extent of barite scale 
precipitation impacted by:
‒ Inorganic and organic constituents?
‒ Shale mineralogy?

8



Possible Ba sources

• Base fluid (fresh 
water/brine)

• Additives
• Host shale
• Drilling mud
• Casing material http://www.enventuregt.com/en/products-solutions/life-

well/completions/multi-stage-fracturing

9
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Is the shale the Ba source?

• Eagle Ford, Green 
River, Marcellus, 
Barnett

• Acidic Fracture 
fluid (pH = 2), 
water, pH 2 only, 
additives only

• Whole 
rock/ground

• 3-weeks at 80oC

0% 20% 40% 60% 80% 100%

Eagle Ford

Green River

Barnett

Marcellus

Quartz Carbonate Clay Pyrite Feldspar Analcime

Shale Total Barium (ppm)
Marcellus 1675
Barnett 518
Green River 1188
Eagle Ford 104.8
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Ba release from different shales
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Effect of solution chemistry on Ba Release
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• For high-clay shales, ~50% of 
Ba can be removed by acidic 
solutions

• Water alone can remove as 
much Ba from shale as acidic 
water, just slower
‒This suggests a portion of Ba 

in the shale is fairly soluble
• Ba release is fairly rapid with 

most occurring < 1.5 weeks 
under non-briny conditions

Shale Ba Pre-
reaction 
(ppm)

Ba Post-
reaction 
(ppm)

Marcellus 1675 898
Barnett 518 215.7
Green 
River

1188 1094

Eagle 
Ford

104.8 < 1.5

Ba release: Shale
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What about Drilling Mud?

• Used to prevent blowout
• DM used at MSEEL site
• High density: ρ = 1.32 g/mL
• Density primarily due to barite
• NaCl concentration (soln.) ~111 

g/L
• Ba concentration (soln.) 2 ppm
• 99.4% of all Ba in solids

Same Mass
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Comparison on Ba concentrations
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Question 1.
What are the geochemical 

controls over barite 
precipitation? 

Impact of pH, ionic strength?
Impact of organics?
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Ba Leach results pH and I.S.
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Ba Leach results Organics
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Comparison: DM vs Shale (pH = 0)
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Impact of Barite precipitation on Altered Zone

• How deep can these 
chemical reactions 
penetrate the matrix?

• What are the controlling 
factors?

• How do these reactions 
affect matrix 
diffusivity/permeability? 
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How does shale mineralogy affect Ba-scale? 
Experimental approach

Synthetic fracture fluid (FF)
Ingredient Mass Purpose

Pure Water (contains 
dissolved O2)

99.8% Base fluid

Hydrochloric Acid 0.12% Acid

Organics <0.1% Gellant, friction 
reducer,  scale 
inhibitor, corrosion 
inhibitor, etc.

Marcellus-NY

Marcellus-PA Eagle Ford

No microcracks
Has microcracks

Carbonate-poor Carbonate-rich

Condition 1: FF

Condition 2: FF + 2 mM BaCl2 + 0.06 mM Na2SO4

SI(barite) = log10(Q/K) = 1.3
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Barite (BaSO4) Precipitation (Marcellus-NY sample)

Marcellus-NY: No microcracks; Carbonate-poor
pHinitial = 2.0; pHfinal = 2.4-2.5

Marcellus-NY
Pre-reaction

Marcellus-NY
Post-reaction, Condition 1

Marcellus-NY
Post-reaction, Condition 2

Reaction is limited due 
to lack of microcracks

Barite on 
surface

Condition 1: FF Condition 2: FF + 2 mM BaCl2 + 0.06 mM Na2SO4

CT slices:
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Barite (BaSO4) Precipitation (Marcellus-PA Sample)

Marcellus-PA: Has microcracks; Carbonate-poor
pHinitial = 2.0; pHfinal = 3.6-4.0 • Carbonate dissolution increased pH

• Barite precipitated on shale surface

Barite on 
surface

CT slices:
Marcellus-PA
Pre-reaction

Marcellus-PA
Post-reaction, Condition 1

Marcellus-PA
Post-reaction, Condition 2

Condition 1: FF Condition 2: FF + 2 mM BaCl2 + 0.06 mM Na2SO4
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Barite (BaSO4) Precipitation (Eagle Ford Sample)

23

Eagle Ford: Has microcracks; Carbonate-rich
pHinitial = 2.0; pHfinal = 8.2 

• Carbonate dissolution increased pH to neutral
• Barite precipitated in the microcracks and matrix

Barite in matrix & cracks

BaSO4 precipitates 
faster at neutral 
than acidic pH

2 mm

CT slices:

Condition 1: FF Condition 2: FF + 2 mM BaCl2 + 0.06 mM Na2SO4

Eagle Ford
Pre-reaction

Eagle Ford
Post-reaction, Condition 1

Eagle Ford
Post-reaction, Condition 2



Major Conclusions

• Drilling mud appears to be the main source of Ba 
in unconventional systems

• Ba & SO4 readily precipitate as pH increases
• pH buffering capacity of the shale (carbonate) 

controls the amount of barite scale
• Organics tested do not inhibit barite precipitation
• Microcracks promote access of acidic fluids to 

calcite, matrix



Ongoing work & future directions

•Basin-specific investigation of shale-fluid 
interactions: modeling and experiment

•Develop new fluid compositions to mitigate 
mineral scaling

•Use acoustic approaches to measure 
porosity/scale formation in-situ

•Develop new stimulation 
techniques/formulations to enhance shale 
matrix accessibility
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Geochemistry?

• Geochemistry controls permeability
permeability (under explored)
• Dissolution (general): means to increase permeability, and to initiate 

massive chemical reactions
• Precipitation (general): carbonates, sulfates, iron-bearing minerals 

oxides
• Ppt reduces permeability by occluding fracture apertures and by 

coating fracture surfaces
• Fe redox: can be driven by  DO and pH changes

Project Management



Accomplishments to date

 Published 6 manuscripts; 1 in press; 1 in review; 2 in 
preparation

 1 Provisional Patent filed
 19 presentations (3 invited) at national/international meetings
 Identifying major geochemical controls over barite scale 

precipitation and mechanisms of permeability reduction
 Demonstrated precipitation of secondary minerals and scale 

within shale in response to unconventional stimulation
 Modeled key fracture fluid-shale reaction networks
 Identified a new source for Ba and developed a new model on 

Ba-cycling in unconventional systems
 Developed model for processes controlling U release



Lessons learned

• Comparing shale-fluid reactivity across basins, 
compositions is critical to developing geochemical 
and geomechanical insights

• Coupling macroscopic and microscopic/mechanistic 
studies is critical

• Laboratory-based surface imaging techniques 
(SEM) can not be used to study 
reactions/precipitation occurring in shale matrix



Synergy Opportunities

COLLABORATIONS:
• Fracture-scale geochemistry A. Hakala, C. Lopano (NETL)
• Field laboratories MSEEL, HFTS
• Multi-length scale LBNL (Steefel, Deng), LLNL (Morris)
• Microbial processes S. Eisenlord (GTI), P. Mouser (OSU)
• Industrial partnerships Pioneer (T. Spalding), 

Range (J. Frantz)



Project summary

Project goals: improve knowledge base - critical 
processes

• (i) Characterize shale alteration: nanometers to microns
• (ii) Identify geochemical controls
• (iii) Link to permeability modification
• (iv) Develop numerical models

Success criteria:
• On-time execution of PMP
• Link shale alteration to permeability
• Develop numerical models
• Presentations at national/international meetings
• Publications in major journals



THANK YOU,            !
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Geochemistry?

• Geochemistry controls permeability
permeability (under explored)
• Dissolution (general): means to increase permeability, and to initiate 

massive chemical reactions
• Precipitation (general): carbonates, sulfates, iron-bearing minerals 

oxides
• Ppt reduces permeability by occluding fracture apertures and by 

coating fracture surfaces
• Fe redox: can be driven by  DO and pH changesAppendices



Benefit to the Program

Program goals addressed:
• Improve recovery factors
• Improve water reuse/recycling
• More sustainability of shale 

reservoirs
• Lay foundation for 

transformational advancement 
of unconventional resource 
recovery 

Fracture-fluid interfaces are 
crucial



Project overview

Project goals: improve knowledge base - critical 
processes

• (i) Characterize shale alteration: nanometers to microns
• (ii) Identify geochemical controls
• (iii) Link to permeability modification
• (iv) Develop numerical models

Success criteria:
• On-time execution of PMP
• Link shale alteration to permeability
• Develop numerical models
• Presentations at national/international meetings
• Publications in major journals
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Organization Chart, Expertise, and Roles

SLAC director
Chi-Chang Kao

SSRL director
Kelly Gaffney

Senior Scientist,
Research Manager

John Bargar, Geochemistry
Synchrotron-based 

spectroscopy, imaging

SLAC scientific staff
Adam Jew, Research Associate

Qingyun Li, Postdoc

Co-Principle Investigators:

Stanford University

Gordon Brown, Jr., Geochemistry
Tony Kovscek, Reservoir engineering

Fluid flow
Kate Maher, Geochemistry, Reactive

Transport
Mark Zobak, Geomechanics

SLAC
Yijin Liu, CT Imaging



Gantt Chart – reproduced from Quarter 3 report (7-30-2018)
Task Title

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

1 Project management plan
1.1 Development of PMP
1.2 Recruit postdoc/RA
1.3 Quarterly research performance reports
1.4 Annual research performance report
1.5 Final technical report
2 Influence of dissolved organic compounds on precipitate formation/stability

2.1 Evaluate literature/ experimental design
2.2 Set-up and test stirred tank reactors
2.3 Complete initial scoping experiments 
2.4 Complete measurements of initial rates 

of solid precipitation
2.5 Identification of precipitate mineralogy
2.6 Measure shale sand dissolution
2.7 Complete solubility measurements
2.8 Dissolution rate measurements in 

presence of shale sands  
2.9 Complete initial draft of manuscript 
2.10 Submit manuscript

3 Impact of secondary pore networks on gas transport across shale matrix-fracture interfaces
3.1 Evaluate literature/ experimental design
3.2 Submit beam time proposals 
3.3 Acquire shale samples
3.4 Quarterly (as needed) with NETL group
3.5 Quarterly (as needed) with LANL group
3.6 Mineral characterization shale samples
3.7 Measure permeability of unreacted cores
3.8 Collect μ-CT images, unreacted  cores
3.9 Image processing, unreacted shale cores

3.10
Test whole-core reactors: Initial scoping 
experiments 

3.11 Perform shale whole-core reactions
3.12 Collect μ-CT images on reacted cores
3.13 XRM maps, unreacted/ reacted  cores
3.14 Measure permeability of reacted cores
3.15 Image processing, reacted shale cores

3.16
Develop a batch reaction model to refine 
rate constants for Fe(II) oxidation 

3.17 Complete initial draft of manuscript 
3.18 Submit manuscript

4 Impact of matrix precipitation on gas transport across shale matrix-fracture interfaces
4.1 Evaluate literature/ experimental design
4.2 Measure permeability of unreacted cores
4.3 Collect μ-CT images, unreacted  cores
4.4 Image processing, unreacted shale cores

4.5
Test whole-core reactors: Initial scoping 
experiments 

4.6 Perform shale whole-core reactions
4.7 Measure permeability of reacted cores
4.8 Collect μ-CT images on reacted cores
4.9 XRM maps, unreacted/ reacted  cores
4.10 Image processing, reacted shale cores

4.11
Develop a batch reaction model to refine 
rate constants for barite scale 

4.12
Build a 1D reactive model for shale 
matrix-fluid interface reactions 

2016 2017 2018 2019
Month of project
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