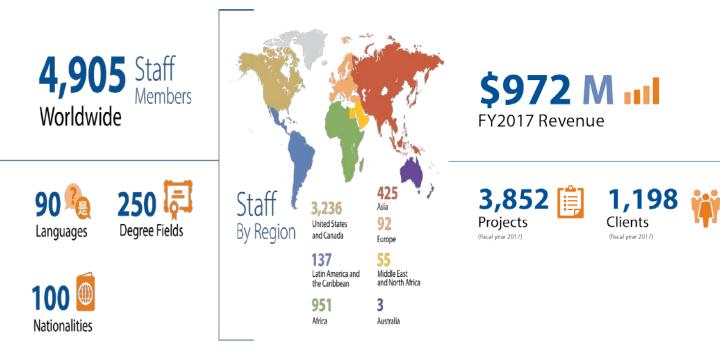
Engineering Scale Testing of Transformational Non-Aqueous Solvent-Based CO₂ Capture Process at Technology Centre Mongstad

<u>S. James Zhou</u>, Paul Mobley, Jak Tanthana, Aravind Rabindran, Mustapha Soukri, Vijay Gupta, and Marty Lail


> DE-FE0031590 DOE Program Manager: Steve Mascaro

2018 NETL CO₂ Capture Technology Meeting

August 13 - 17, 2018

RTI at a Glance

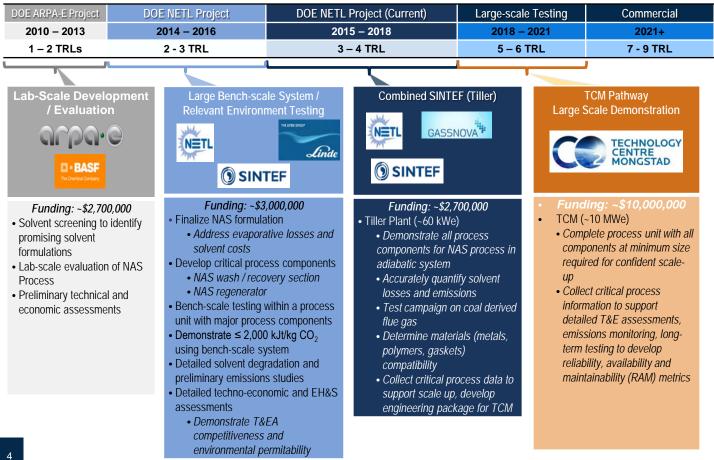
Diverse Global Workforce & Worldwide Presence and Financial Strength

Project Summary

Objective: Testing and evaluation of the transformational Non-Aqueous Solvent (NAS)-based CO₂ capture technology at engineering scale at TCM

Key Metrics

- Solvent performance including capture rate, energy requirements, solvent losses
- Solvent degradation rates, corrosion rates, emissions due to vapor and aerosol formation
- Operational efficiency over static and dynamic operating conditions
- Existing technical and process risks and their mitigation
- Technoeconomic and EHS evaluation


Specific Challenges

- Operate TCM plant within emission requirements
- Minimize rise in absorber temperature
- Maximize NAS performance with existing hardware limitations

Timeframe: 8/8/18 to 1/15/21

Accelerated Technology Pathway

Background: Progress to Date

Parametric and Long-term Testing

 543 h on parametric testing and 1,043 h on stream for long-term testing, total of 1,587 h with coal-fired flue gas

HSS formation

- Low levels of HSS formation during the course of testing
- Water Balance
 - Can be controlled at desired level

Corrosion

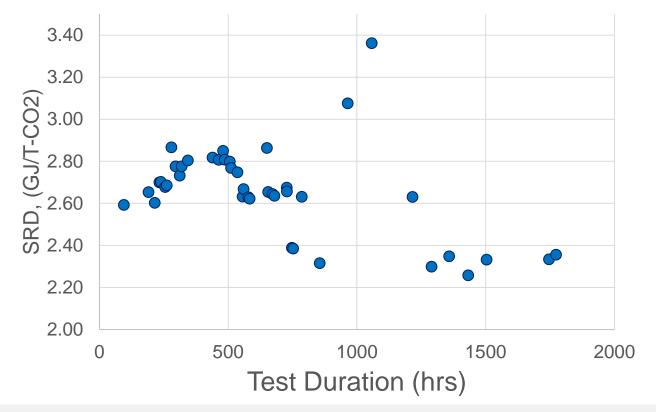
- Lower rate of corrosion than MEA

Performance

- 90% capture, stable operation, SRD = 2.1 to 2.3 GJ/t-CO2

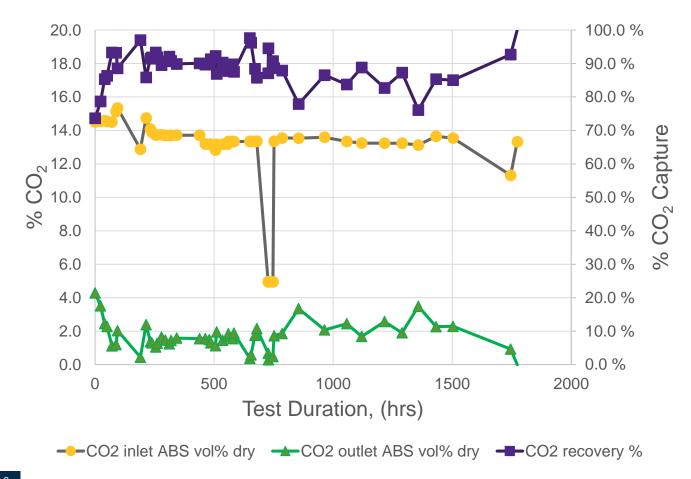
Viscosity

- Lean: 4.38-4.7 cP
- Rich: 18 to 20 cP

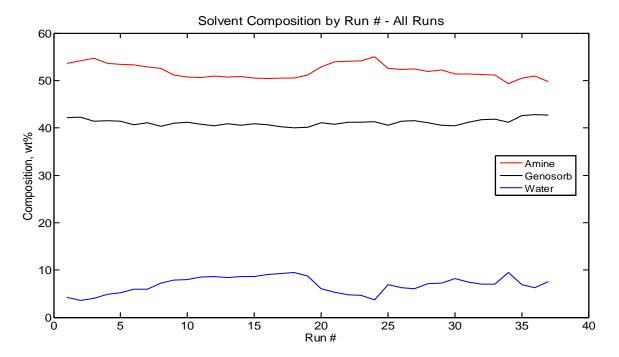

Tiller coal flue gas composition

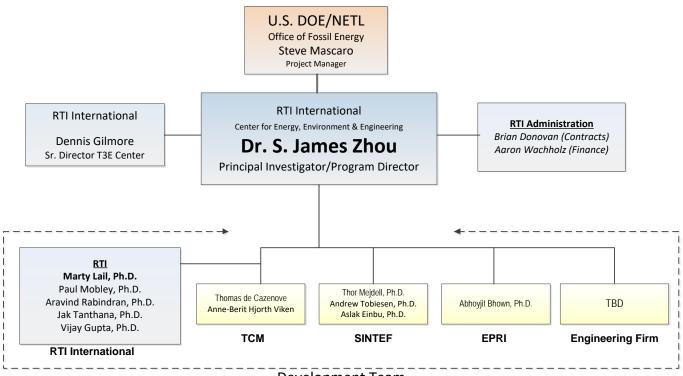
H2O	CO2	СО	NO	NO2	N2O	SO2	NH3	HCI	HF	нсно	02	
vol%	vol%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	vol%	
5.5	16.0	11.5	79.8	0.5	0.8	198.8	0.1	2.1	0.4	0.3	7.2	Before DCC
3.1	15.9	11.2	81.0	0.6	1.2	2.7	0.3	0.4	0.2	0.2	7.3	After DCC

Flue gas composition and conditions at Tiller plant in comparison with those at NCCC


Component	Unit	Tiller Flue Gas	Design (NCCC)	Average (NCCC)
CO2	vol %	12 - 15	12.14	14
02	vol %	4.0 – 7.3	5.20	4.5
N2 + Ar	vol %	66 - 69	69.36	68.5
H2O	vol %	3 - 6	13.30	13
SO ₂	vppm	3	1	2.5
NO _x	vppm	80	80	-
Temperature	°C (F)	40 – 70 (100 – 160)	71 (160)	68 (155)
Pressure	mBar-g (H2O)	25 (10)	25.4 (10)	8. (20)

Background: Long-term test of NAS-5 – SRD


 543 h on parametric testing and 1,043 h on stream for longterm testing, total of 1,587 h


Background: Long-term test of NAS-5 – CO_2 capture

Background: Water Balance

- Water content maintained near 5-8%
- Controlled by water wash temperature ~2°C higher than inlet flue gas saturation temperature

Development Team

Project Team

Team Member	Role	Expertise
RTI Internation al	Prime recipient, owner and developer of NAS technology (process design, NAS formulation), project management, economic analyses, environmental assessment	 Effective project management and execution under DOE cooperative agreements Lead developer of NAS CO₂ capture technology Process design, modeling, and engineering capabilities Process technology scale-up and operation from lab to large precommercial demonstration systems
ТСМ	Host site (existing infrastructure) for large scale (~10 MW) pilot, EH&S support, operational support	 World leading test facility for CO₂ capture Dedicated operations staff Actual flue gas supply (similar to coal) Full analytical labs EH&S and quality standards
SINTEF	Solvent qualification, engineering support, and operational support	 Pilot plant (Tiller) for solvent-based CO₂ capture processes, operational and EH&S expertise Engineering design of process components Analytical equipment for solvent testing
EPRI	TEA, process validation	 Development of techno-economic models and testing with stakeholders to drive common methodology guidelines Experience with TCM project assessment TEA performance following DOE guidelines Perform third-party process verification
Clariant	Solvent supplier under RTI license	• Commercial-scale manufacturing and shipping of suitable solvent quantities according to solvent specifications and permitting requirements

Task 1.0Project Management and Planning (spans both BP1 and BP2)

<u>BP1 Tasks</u>	
Task 2.0	TCM EH&S Risk Evaluation and Permitting
Task 3.0	Solvent Production
Task 4.0	Solvent Qualification
Task 5.0	Preliminary Design of a NAS Optimized System
Task 6.0	Test Period I Drop-in Test
<u>BP2 Tasks</u>	
Task 7.0	Revamp Implementation
Task 8.0	Test Period II: Revamp Unit
Task 9.0	Decommissioning and Waste Handling
Task 10.0	Final Techno-Economic Analysis
T 1 44 A	—
Task 11.0	Technology Gap Analysis

- Confirm that the conventional aqueous amine system can be operated without issue with NAS
- Confirm NAS pilot-scale baseline performance results
- Confirm NAS pilot-scale optimal performance results
- Refine Techno-economic analysis
- Control and manage emissions
- Control and manage water balance at this scale
- Determine the resulting impact on the reboiler heat duty
- Gain operational experience

Decision Point	Date		Success Criteria
Beginning of BP2	01/15/2010	1.	NAS drop-in test at TCM using its amine plant in its current configuration confirms small pilot SRD performance at SINTEF and predicted SRD from TCM plant model
		2.	Completion of revamp engineering and favorable cost-benefit analysis
Completion	01/15/2021	1.	Techno-economic analysis delivered to DOE
of Project		2.	Final report shows techno-economic merit of the NAS process for CO_2 capture and confirms readiness for next TRL
		3.	Large NAS optimized pilot project cost estimate finalized
		4.	All other reports delivered according to FOA requirements

Overall Project Timeline

Task	Task title	Start date	End	2018					20	19				2020						2021					
			date	7 8 9 10 11 12	1	2	3	45	6	78	9	10 1	11 12	1 2	23	4 5	6	78	39	10	# #	1 2	3	45	6
1.0	Project Management and Planning	08/08/18	01/15/21																					-	
	1.1 Test Agreement with TCM	08/08/18	11/15/18																						
2.0	EH&S and Risk Evaluation and Permitting	08/08/18	03/15/19																						
3.0	Solvent Production	03/01/19	08/09/19																						
4.0	Solvent Qualification	05/06/19	05/17/19					-																	
	4.1 RTI tests	05/06/19	05/17/19																						
	4.2 SINTEF Tiller tests	05/06/19	05/17/19																						
5.0	Preliminary Design of a NAS Optimized System	10/08/18	01/06/19																						
	5.1 Cost Benefit Analysis for NAS Optimized System	01/08/19	04/09/19																						
6.0	Test Period I: "Drop-In" Test	09/01/19	11/30/19																						
7.0	Revamp Implementation	01/01/20	05/15/20										GN	16											
	7.1 Interstage Cooler	02/01/19	06/15/20												-										
	7.2 Pre-heater	09/08/19	01/22/20														-								
8.0	Test Period II: Revamped Unit	02/08/20	08/09/20																-		-				
9.0	Decommissioning and Waste Handling	07/22/20	10/21/20																						
10.0	Final TEA (550 MW Net)	07/22/20	01/05/21																					-	
11.0	Cost Benefit Analysis and Technology Maturation Planning	08/08/18	01/15/21																		A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.				

Project Timeline – BP1 NAS Testing Details

			<u> </u>		<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>										_
Name	Start	Finish	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
Initial Emission Reduction Recommendation to												1											
ТСМ	4/17/2018	4/20/2018																					
NAS Testing Project Description to TCM	4/17/2018	4/25/2018																					
Process and Emission Modeling for TCM Testing	5/1/2018	6/14/2018																					
RTI Emission Reduction Testing	6/11/2018	8/17/2018																					
Plant Washing Procedure to TCM	8/13/2018	8/22/2018																					
NCCC NAS Testing with Coal Flue Gas	5/29/2018	7/27/2018																					
Emission Reduction Recommendation to TCM	8/20/2018	8/30/2018																					
TCM Emission Permitting	7/2/2018	12/1/2018																					
NAS Prodcution/Delivery to TCM	3/1/2019	8/9/2019											-										
NAS Solvent Qualification Testing	5/6/2019	5/17/2019																					
NAS Baseline Testing	9/2/2019	12/13/2019																					
Initial Testing with CHP Flue gas	9/2/2019	9/13/2019																		E			
Parametric Testing with RFCC Flue Gas	9/16/2019	9/27/2019																					
Long-term Testing with RFCC Flue Gas	9/30/2019	12/13/2019																					

Descript	ion of Risk/Area		Prob.	Impact		Risk Management (Mitigation and Response Strategies)
Technical	Risks:					
Material	Cost and	•	Low	High	• 5	Solvent quotes from multiple vendors
	Availability of NAS				• F	Previous order of more than 2,000 Kg
	Components					Request discounts for larger order (~50,000 kg needed at TCM)
Process	Solvent Loss	•	Low	Moderate	а	Return water wash back to the process to control amine loss
						ean splitting and rich solvent washing
Process	Solvent Loss due	•	Moderate	Moderate	• V	Nater wash + acid wash to control emissions
	to Aerosols, Solvent				• F	Rich solvent to dry column
	Emissions				• F	Reduced gas flow to control aerosol

Descript	ion of Risk/Area	Prob.	Impact		Risk Management (Mitigation and Response Strategies)
Process	NAS Degradation due to Extended Solvent Exposure to Coal-derived Flue Gas	Moderate	Moderate	•	Tiller performed 1400 hours of NAS testing with coal-derived flue gas with no apparent decrease in NAS performance
Process	Water Management	Low	High	•	Tiller parametric and long-term tests show that water balance can be maintained
Legal	Permitting	Low	High	•	RTI is working with TCM to supply all required information for permit application
Safety	Construction Risk, Plant Operation	Low	High	•	TCM has existing safety rules TCM has qualified personnel for operation and construction

Descript	ion of Risk/Area	Prob.	Impact	Risk Management (Mitigation and Response Strategies)
Resource	Risks:			
Suppliers	Production Schedule and	Low	Moderate	Order solvent on timeCommunicate with supplier often
	Delivery			
Managem	ent Risks			
Project Cost	Project Cost	Moderate	High	 RTI will employ cost control using earned-value management techniques RTI will tack completion of tasks, schedule, and
				costs to remain within the budget
				 Cost deviations and/or projections of deviations will be reported to DOE immediately along with a corrective action plan.
Cost Share	Cost Share	Low	High	Cost share depending on test duration at TCMExchange rate

NAS CO₂ Capture Technology Path to Market

Lab-Scale Development & Evaluation (2010-2013)

Solvent screening

Lab-scale evaluation of process

Large Bench-Scale System (RTI facility, 2014-2016) Demonstration of key

process features ($\leq 2,000$ kJ/kg CO₂)

Pilot Testing at Tiller Plant (Norway, 2015-2018)

Demonstration of all process components at pilot scale (~60 kWe)

Engineering-Scale Validation (2018+)

Pre-commercial Demonstration at Technology Centre Mongstad, Norway (~10 MWe)

Planning to start test in late 2018

From lab through large scale (10 MW) demonstration through series of projects

 Financial support provided by DOE NETL under DE-FE0031590

- DOE Project Manager: Steve Mascaro
- Project partner and host site TCM
- Project partner SINTEF

- Project partner EPRI
- Solvent supplier Clariant

S James Zhou

Director, Gas Separation Center of Technology for Energy, Environment & Engineering RTI International <u>szhou@rti.org</u> + 1 (919) 485 2601