Small Business Innovation Research (SBIR/STTR)
Phase II
Department of Energy

Methodology for Attrition Evaluation of Oxygen Carriers in Chemical Looping Systems
(DE-SC0011984)

August 14, 2018
• US Department of Energy - NETL
 • Steve Richardson, John Rockey and Gregory O’Neil – Program Manager

• Envergex, LLC

• University of North Dakota-Institute for Energy Studies
This project addresses two critical elements of chemical looping combustion: oxygen carrier (OC) attrition propensity and reactivity

- Loss due to attrition of the OC → minimized to make technology cost-effective
- OC selected - reactive to reduced species (CO, H\textsubscript{2} and HC’s)
- Other objectives: identification of reaction mechanisms, material morphology changes

Approach

- Modification of ASTM D5757 for determining attrition characteristics of powdered catalysts to include high temperature and reacting (cyclic oxidation/reduction) conditions
Attrition in CLC systems

- Several regions of high attrition
 - Jet/bubbling/freeboard regions (1a,b,c)
 - Riser (2)
 - Cyclone (3)
 - Standpipe (4)

Main regions of concern\(^1, 2, 3\)

- Cyclone
- Jet

PROJECT GOALS

➢ Phase II

1. Attrition performance investigation - several oxygen carriers

2. Determine attrition performance as function of temperature, jet velocity, cyclone inlet velocity, gas composition, test duration

3. Gather reactivity metrics/attrition data

4. Develop new equipment/methodology for evaluation of attrition through cyclonic/impaction mechanisms

5. Develop knowledge database; formulate strategies for commercial test service offering
Jet attrition

- “High velocity jets” in reducer/oxidizer (30-50 m/s)
- Source of attrition
 - \textit{Attrition: oxidizer > reducer} due to re-oxidation requirement
 - Unit should account for temperature/reactions on attrition
 - \textit{Higher jet velocity in test unit} (100-500 m/s); speed up attrition process
Cyclonic attrition

- Cyclone necessary for material transport
- Source of attrition
- Cyclone separating devices accelerate particles to wall
- Particles impact/shear against walls
- Test unit built to mimic impact and shear forces
OXYGEN CARRIER EVALUATION UNIT

Hot Flow Test Unit

- Filters
- Settling Chamber
- Reactor
- Reactor Heater
- Laser Gas Analyzer

Mass Flow Controllers
Electrical Controls
UNIQUE REACTOR ATTRIBUTES

- **Reactor interchangeable**
 - Fast removal/installation of jet/cyclone unit
 - Cyclone unit: custom *draft tube guides particles to wall*
 - Jet attrition unit: custom distributor plate (not shown)
Jet and cyclonic attrition testing reactors

- **Cyclic oxidation/reduction** 25-40 cycles at 800 – 970 °C
- Typical cycle: 8 min redox reactions, 2 min purge between redox
- Reduction gases: CO (*and or* H₂), H₂O and N₂
- Oxidizing gases: O₂ diluted by N₂
- Sample size \(\geq 30 \text{ g} \text{ jet attrition}; \geq 70 \text{ g} \text{ cyclonic attrition} \)
- *Jet velocity* 280 ~ 500 m/s at temperature
- *Cyclone inlet velocity* 5-20 m/s at temperature
Jet and cyclonic attrition data gathering/analysis

- **Attrition rate** vs time (and # of cycles)
- Attrition rate – expressed in **% of initial mass charged per hour**
- Exit gas concentration (online laser gas analyzer)
- **Reactivity** – each redox cycle (CO/H₂)
- Reactivity – expressed as **% conversion for each given cycle**
- **Particle size distribution** pre and post test

![Graph of attrition rate vs time](image1)

![Graph of gas concentration](image2)

![Graph of particle size distribution](image3)

Sample 1.8, 970°C **Sample 1.9, 820°C** **Sample 1.10, 895°C**
Key outcomes

- Predictive jet attrition model proposed
- Attrition rate predictions strongly affected by jet velocity
- Identified new applications for test unit

Attrition not captured by ASTM D5757
RESULTS - JET ATTRITION

- Reactivity (SEM cross-sectional analyses: Post-run ilmenite samples)
 - Material structure less defined at 10% vs 30% fuels cases
 - *Outer FeₙOᵧ-layer* more pronounced at 30% fuel conc.
 - *Enhanced availability of FeₙOᵧ* in outside layer → higher fuel conversion
 - *Reduced attrition* at higher fuel concentrations (agglomeration)
 - *O₂ carrying capacity* = 3.0% for 30% fuels vs 1.6% for 10% fuels (via TGA)
 - Tests indicated *importance* of fuel composition on attrition of OC
Rate of attrition expression

- Proposed attrition model $A_j \propto \left(\frac{E_k g}{m_b}\right)^n$
- Defining $k_j =$ jet attrition constant, we obtain an equality

![Graph depicting the relationship between attrition rate and kinetic energy of moving fluid per mass of bed material, with equations for different materials: Manganese ore, Calcium manganite, Ilmenite (Coarse), Ilmenite (Fine), Red Mud. The equations for each trend line are given, along with their respective R² values.](image)
Rate of attrition expression

- Model results compared to 10 kW\textsubscript{th} unit (Berguerand & Lyngfelt (2008b))
- Attrition rate (model): 2.0E-02 - 3.4E-02 wt-%/hr
- Attrition rate (experimental): 2.02E-02 wt-%/hr
- Differences - Attributable to wide operating ranges used in experiments

<table>
<thead>
<tr>
<th>10 kW\textsubscript{th} unit</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen carrier</td>
<td>NiO/NiAl\textsubscript{2}O\textsubscript{4}</td>
</tr>
<tr>
<td>OC density (kg/m3)</td>
<td>3250-3800 (material)</td>
</tr>
<tr>
<td>Particle size distribution (µm)</td>
<td>90-212</td>
</tr>
<tr>
<td>Air reactor flow rate (NLPM)</td>
<td>-</td>
</tr>
<tr>
<td>Material inventory (kg)</td>
<td>15-16 (5.9 in air reactor)</td>
</tr>
<tr>
<td>Solids circulation rate (kg/min)</td>
<td>2-4</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>1000</td>
</tr>
<tr>
<td>Loss of fines, particles < 45 µm(wt-%)/hr</td>
<td>0.003</td>
</tr>
<tr>
<td>Inlet nozzle velocity (m/s)</td>
<td>100</td>
</tr>
</tbody>
</table>

Cyclonic attrition: Cold flow

- Tests conducted at ambient conditions
- Graph and filters show effects of increasing draft tube velocity
- Attrition at cold flow – Coarser ilmenite (177-250 µm) more sensitive to draft tube velocity than finer ilmenite (74-105 µm)
RESULTS – CYCLONIC ATTRITION

➢ Cyclonic attrition: Circulation rate through draft tube

- Several materials tested – Varied cyclone inlet velocity (5 – 20 m/s)
- Determined circulation rate for each material at ambient conditions
- Choked particle flow reached = Constant circulation rate
- Velocity effect on attrition measurable – Constant circulation rate
Hot flow cyclonic attrition results:

- Attrition rate: Rate of fines generated divided by circulation rate in cyclone
- Model*
 \[r_c = \frac{C_c d_p v_{c, in}^2}{\sqrt{\mu_c}} \]
- Similar trend to jet attrition
- Supported Fe-based OC performance > than Mn-based OCs

RESULT S – CYCLONIC ATTRITION

Rate of attrition expression

- Model results compared to 10 kW_{th} unit (Berguerand & Lyngfelt (2008b))
- Cyclonic attrition rate (model): 2.5E-02 - 5.9E-02 wt-‰/hr
- Attrition rate (experimental): 2.02E-02 wt-‰/hr
- Apparent – cyclonic attrition more important compared to jet attrition

CONCLUSIONS – COMPARISON BETWEEN MODES OF ATTRITION

- **Attrition rate greatly affected by combination of factors**
 - Gas flows, solids inventory, circulation rate and velocity dependence
 - *Cyclonic attrition: Comparable to full-scale systems*
 - Sped up process since higher frequency of particle impacts
 - *Attrition mechanism better represented by cyclonic attrition unit*

- **Indication: Cyclonic attrition ≥ Jet attrition**
 - *Jet attrition exaggerated* (at jet velocities ≥ 100 m/s)
 - Jet attrition – good *short term, quick screening*
 - *Cyclonic attrition unit – good particle lifetime estimation*
 - Cyclonic and jet attrition units = *Valuable tools*
 - *Rapidly screen/test potential oxygen carriers* for larger scale testing
COMMERCIAL SUCCESS

- **Babcock & Wilcox**
 - Testing of materials from different vendors (*Compositional analyses*)

- **University of Kentucky**
 - Effect of different *heat pre-treatments* on carrier performance

- **Alstom/General Electric**
 - Testing of different *limestone samples for CLC*
 - Assessment of different sulfated and spent materials for CLC

- **Commercial Client**
 - *Limestone attrition* resistance testing and comparison
 - *Sulfur dioxide capture* efficiency comparison

- **DOE-NETL**
 - *Proposal awards* based on testing capabilities
 - *Manufacturing of OCs*
The United States Department of Energy

- This material is based upon work supported by The United States Department of Energy, Office of Science STTR/SBIR Program (Project DE-SC0011984)

Disclaimer: “This report was report prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.”

- Steve Richardson, John Rockey and Gregory O’Neil
Envergex LLC
Srivats Srinivasachar
Landline: (+1) 508 347-2933; Mobile: 508 479-3784
srivats.srinivasachar@envergex.com

Institute for Energy Studies, University of North Dakota
Daniel A. Laudal
Landline: (+1) 701-777-3456
daniel.laudal@engr.und.edu