Investigating and Quantifying CO₂-Fluid-Shale Interactions

Sean Sanguinito^{1,2}, Angela L. Goodman¹, Barbara Kutchko¹, Sittichai Natesakhawat^{1,3}, Mary Tkach¹, Patricia Madden¹, Jeff Culp^{1,2}, Dustin Crandall¹ ¹US Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA /Morgantown, WV; ²AECOM Corporation, Pittsburgh, PA; ³University of Pittsburgh, Pittsburgh, PA.

Abstract

Investigating and quantifying the interactions that occur between CO₂, fluids, and shale is becoming increasingly important. These interactions will play a large role when (1) storing CO_2 in hydraulically fractured shale formations, (2) utilizing CO_2 as a hydraulic fracturing fluid, and (3) determining if CO₂ can be an effective agent for enhanced hydrocarbon recovery. Regardless of the reason, as CO₂ is injected into a shale formation, it will interact with shale components (i.e. organic matter, minerals, cations/anions) driving various reactions that will alter the rock properties. The alteration of these properties, such as porosity or permeability, will impact the permeance of CO₂ storage and the effectiveness of CO₂ to work as a fracturing or hydrocarbon extraction agent. To examine these alterations, Marcellus and Utica shale samples were analyzed in the presence of CO_2 and fluid (water). Techniques used include feature relocation scanning electron microscopy (SEM), surface area and pore size analysis using volumetric gas sorption and density functional theory (DFT) methods, and in-situ Fourier Transform Infrared (FTIR) spectroscopy. Feature relocation SEM showed little alteration before and after dry and wet CO₂ exposure in the silicate rich Marcellus Shale (MS-1) sample. However, the carbonate rich Marcellus Shale (MS-4) and Utica Shale (US-1) samples experienced minor etching with dry CO_2 and significant carbonate dissolution and precipitation with wet CO_2 . After exposure to CO₂ and water, the Brunauer-Emmett-Teller (BET) surface area of the silicate rich Marcellus Shale increased while the carbonate rich Marcellus Shale decreased. FT-IR spectroscopy indicates formation and dissolution of carbonate species in hydrated carbonate rich shales which buffer as a function of pH with exposure to CO₂ and pressure. Current in-situ FT-IR results are limited to fully saturated samples or completely dry samples. A new system set up, designed to control relative humidity and allow examination of partially hydrated samples, is presented.

Scanning Electron Microscopy: Results

Samples

- A: US-1 Utica Shale (outcrop)
- B: US-PZ Utica Shale (Prod. Zone)
- C: US-AD Utica Shale (At Depth)
- D: MS-1 Marcellus Shale
- E: MS-4 Marcellus Shale
- F: EFS-1 **Eagleford Shale**
- G: MAN-1 Mancos Shale
- H: BS-1 Barnett Shale

Instruments

Surface Area and Pore Size Analysis: Results

US-1

Pore size distribution of US-1 based on CO_2 (left) and N_2 (right) isotherm characterization. BET surface area = 5.8-6.8 (m²/g).

Pore size distribution of MS-1 based on CO_2 (left) and N_2 (right) isotherm characterization. BET surface area = 3.7-8.3 $(m^{2}/g).$

Pore size distribution of MS-4 based on CO_2 (left) and N_2 (right) isotherm characterization. BET surface area = 12.1-49.5 (m²/g).

This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with AECOM. Neither the

United States Government nor any agency thereof, nor any of their employees, nor AECOM, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United

States Government or any agency thereof.

Scanning Electron Microscope used feature relocation before and after dry/wet CO_2 exposure.

Hiden microbalance used for IGA) gravimetric gas adsorption isotherm analysis.

IR Relative Humidity System

- A: Gas inlet from cylinders
- B: Micro metering valve for dry gasses
- C: Micro metering valve for wet gasses
- D: Fluid drip tube
- E: Pressure transducer
- F: Pressure reader
- G: Relative humidity probe
- H: Relative humidity reader
- I: Gas outlet to sample cell
- J: Back pressure diaphragm
- K: Back pressure regulator
- L: Temperature reader

Marcellus

the effect carbon content has on CO₂ adsorption.

Sample ID	Total Carbon		Total Inorganic Carbon	
	Carbon (%)	Std. Dev.	Carbon (%)	Std. Dev.
MS-1	6.64	0.21	0.13	0.06
MS-4	14.7	0.2	5.5	0.06
US-1	9.86	0.08	9.41	0.14

- Using ATR-FTIR Spectroscopy. Energy & Fuels, v. 19, p. 471-476.
- Kutchko, B.G., Goodman, A.L., Rosenbaum, E., Natesakhawat, S., Wagner, K., 2013. Characterization of coal before and after supercritical CO2 exposure via feature relocation using field-emission scanning electron microscopy. Fuel, v. 107, p. 777-786. Levine, J.S., Fukai, I. Soeder, D.J., Bromhal, G., Dilmore, R.M., Guthrie, G.D., Rodosta, T., Sanguinito, S., Frailey, S., Gorecki, D.,
- Peck, W., Goodman, A.L., 2016. U.S. DOE NETL Methodology for Estimating the Prospective CO2 Storage Resource of Shales at the National and Regional Scale. International Journal of Greenhouse Gas Control, v. 51, p. 81-94.
- Sanguinito, S., Goodman, A., Tkach, M., Barbara, K., Culp, J., Natesakhawat, S., Fazio, J., Fukai, I., Crandall, D., 2018, Quantifying dry supercritical CO2-induced changes of the Utica Shale: Fuel, v. 226, p. 54-64.
- Steefel, C.I., Molins, S., Trebotich, D., 2013. Pore scale processes associated with subsurface CO₂ injection and sequestration. Reviews in Mineralogy and Geochemistry. v. 77. p. 259-303. US-DOE-NETL, 2015. Carbon Storage Atlas, fifth edition. U.S. Department of Energy—National Energy Technology Laboratory—
- Office of Fossil Energy.

Science & Engineering To Power Our Future