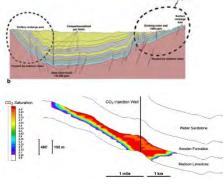
CarbonSAFE Wyoming: Integrated Commercial Carbon Capture and Storage (CCS) Prefeasibility Study at Dry Fork Station, Wyoming

SCHOOL OF ENERGY RESOURCES

Scott Quillinan and Kipp Coddington University of Wyoming

2018 Mastering the Subsurface through Technology Innovation, Partnerships and Collaboration


Project Overview: Goals and Objectives

Identify (Economic) Saline Storage proximal to the Dry Fork Power Station

- a. "Establish a CCS Coordination Team"
- b. "Develop a Plan to Address Challenges of a <u>Commercial-Scale</u> CCS Project"
- c. "High Level Technical Sub-Basinal Evaluation and CO₂ Source Assessment"

2

Meet the team

- University of Wyoming's (UW) Carbon Management Institute
- Basin Electric Power
 Cooperative (Dry Fork Station)
- Wyoming Infrastructure Authority (WIA)/ ITC
- Energy & Environmental Research Center (EERC)
- Advanced Resources International, Inc. (ARI)
- Wyoming Municipal Power
- Office of the Wyoming Governor

- UW's Enhanced Oil Recovery Institute (EORI)
- UW's Center for Energy Economics & Public Policy
- UW's College of Law
- Schlumberger
- KKR
- Carbon GeoCycle

Team members at Dry Fork Station

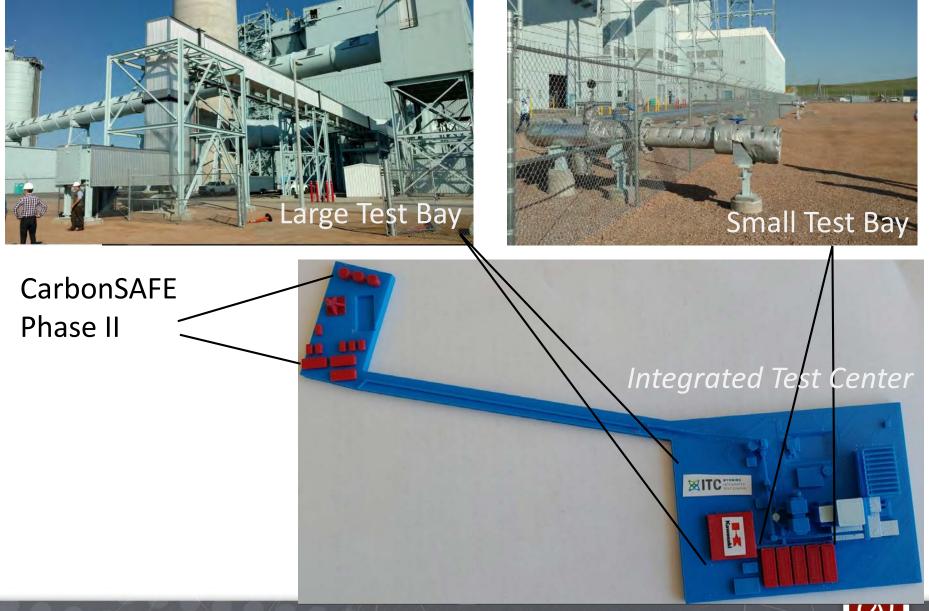
CarbonSAFE Dry Fork: Primary CO₂ Source

- Dry Fork Station (Basin Electric Power Coop)
- Wyoming Integrated Test Center (WY-ITC)

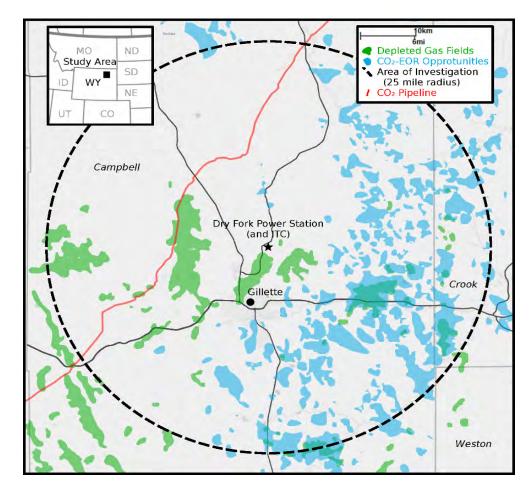
Dry Fork Station

- ✓ Built in 2007
- ✓ 385 MW Power Plant
- ✓ 3.3 Million tons of CO_2 /year

<u>WY-ITC</u>

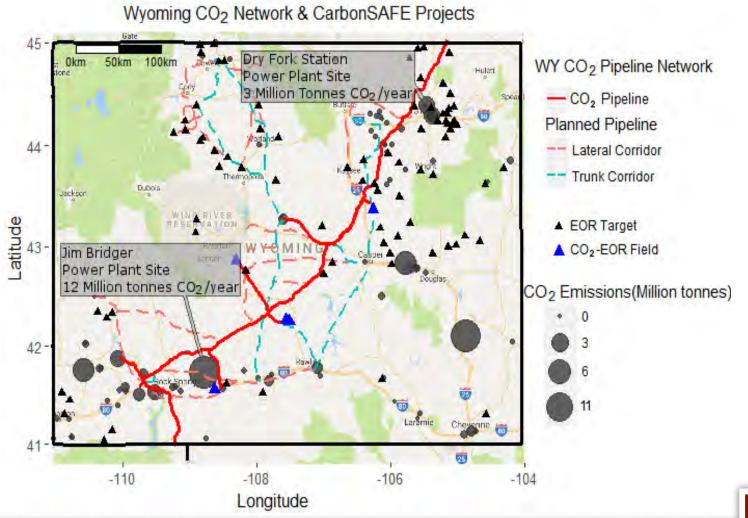

- ✓ Completed fall 2017
- ✓ Test CO₂ capture/CCUS technologies
- ✓ \$20 Million public/private investment
- ✓ NRG COSIA Carbon XPRIZE (\$20M global competition to develop breakthrough technologies for CO₂ emissions)

Synergies with the Wyoming Integrated Test Center

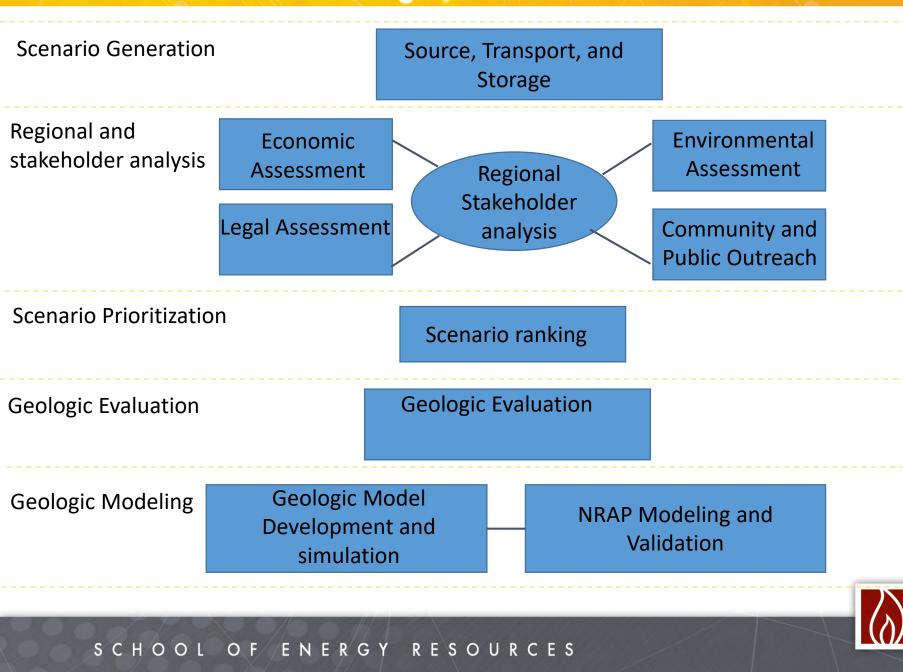


Project scenario: *Storage*

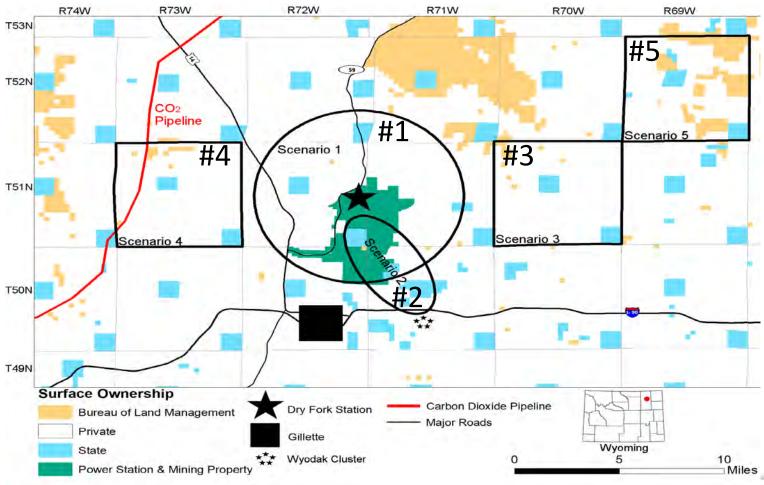
- Saline reservoirs
- CO₂-EOR opportunities
- Depleted gas fields


Favorable Economics

- Co-location of coal supplies CO₂ source, CO₂ transport, EOR, and CO₂ storage opportunities
- ITC
- Use of existing pipelines for utilization off-site



Synergies: CarbonSAFE Prefeasibility Phase I



Dry Fork Prefeasibility Project Map and Methodology

Source, Transport, and Storage

Scenario Generation

Summary Regional and Stakeholder Analysis – Phase 1

Environmental Analysis

- ✓ Protected Species
- ✓ Migration Corridors
- ✓ Wetlands and streams
- ✓ Groundwater
- ✓ Air Quality
- ✓ Protected Areas
- ✓ Cultural Resources
- ✓ Population Centers

✓ Slope Stability

Economic modeling

- Commercial project costs (CAPEX and OPEX)
- ✓ Revenue sources
- Infrastructure costs for future project phases (Various well types and the 3-D seismic survey)

Ownership

- ✓ Pore Space ownership
- ✓ Mineral Ownership
- ✓ Land Surface
 Ownership

Public Outreach

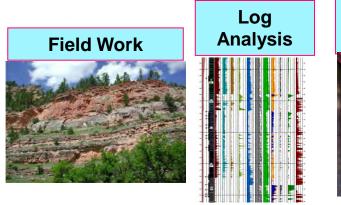
✓ Wyoming State
 Agencies (WDEQ,
 WOGCC)

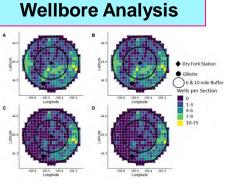
- ✓ Gov. Mead's
 Office, State and
 local representatives
- ✓ Public outreach
 plan

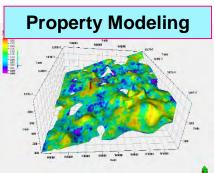
Legal Analysis

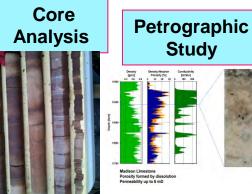
 ✓ Review of Wyoming CCUS laws

Geologic Evaluation: Geologic Reservoir Candidates

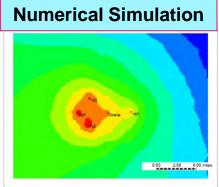







Geologic Evaluation preformed in – Phase 1

- Refine and rank the source, storage and transportation scenarios
- Collect core, outcrop, log and fluid data to inform geologic models and sealing capacity
- Wellbore analysis to determine seal integrity
- Begin/refine geologic modeling for each of the identified scenarios
- Define storage potential for the highest priority reservoirs
- Determine the extent of the CO₂ and pressure plume

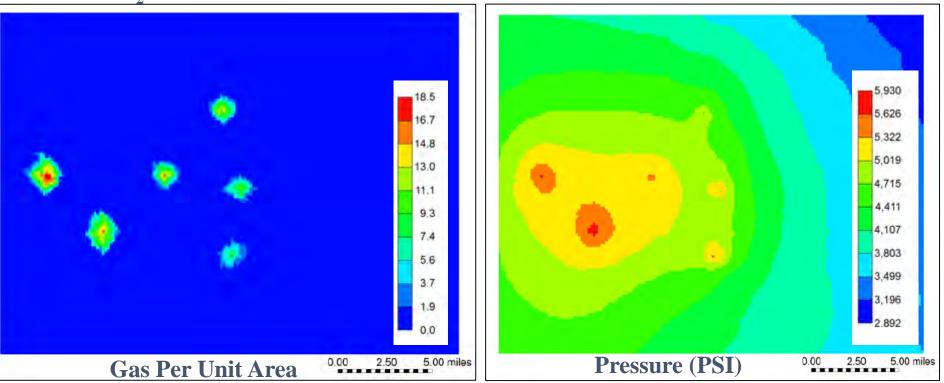


Hydrostratigraphy



Geologic Evaluation:

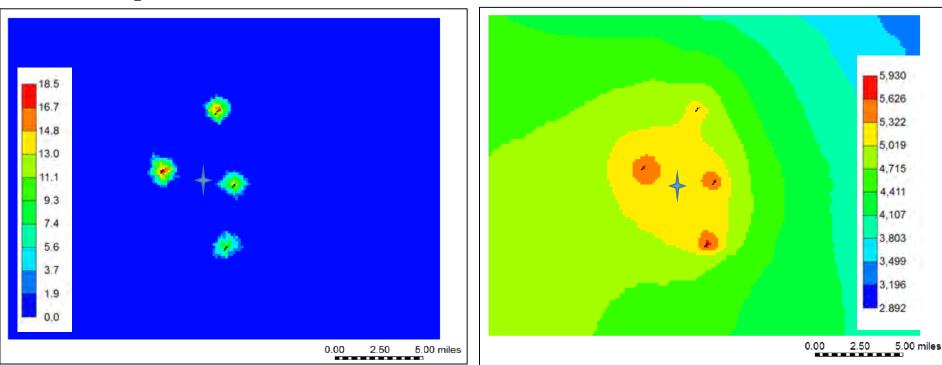
Storage Capacity Estimates


Target Formation	Φ _{avg} (%)	k _{avg} (mD)	Average Thickness	Storage Volume (Mt/mi²)							
I of mation	(70)	(IIID)	(ft)	P10	P50	P90 2.7 1.5					
Minnelusa	13%	44	150	0.84	1.6						
Lwr. Sundance	10%	220	110	0.47	0.89						
Lakota/Fall River	15%	100	70	0.45	0.85	1.5					
Muddy	9% 0.05		10	0.04	0.07	0.1					
Total			,	1.8	3.4	5.8					

Injection Models: 50Mt in 25 years (6 Vertical Injectors)

CO₂ Saturation

Pressure Plume

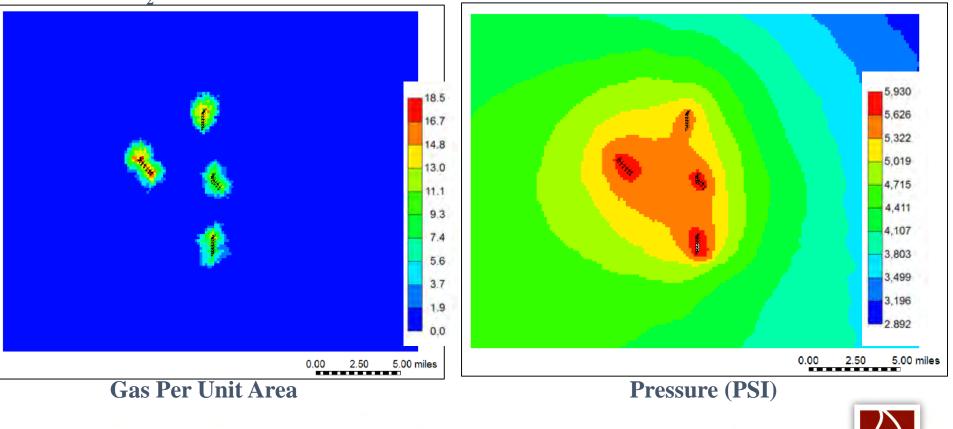


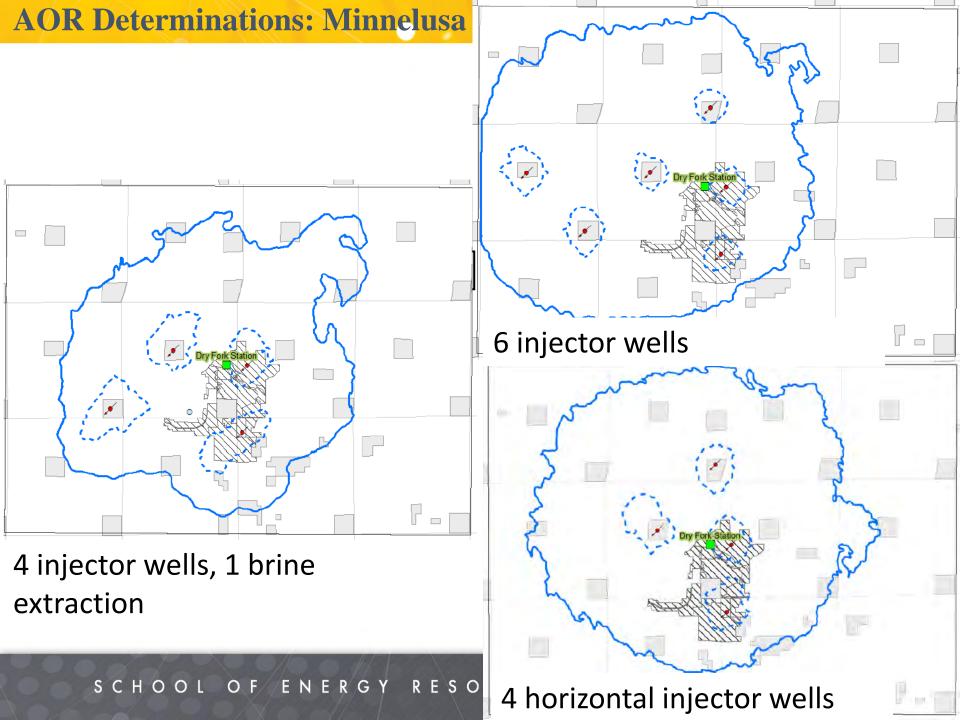
Injection Models: 50Mt in 25 years (4 Vertical Injectors & 1 Brine Production Well)

CO₂ Saturation

Pressure Plume

Gas Per Unit Area

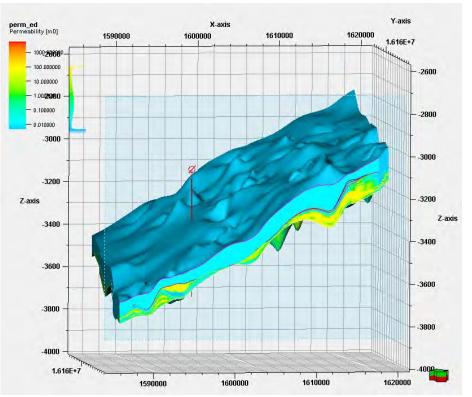

Pressure (PSI)



Injection Models: 50Mt in 25 years (4 Horizontal Injectors)

CO₂ Saturation

Pressure Plume



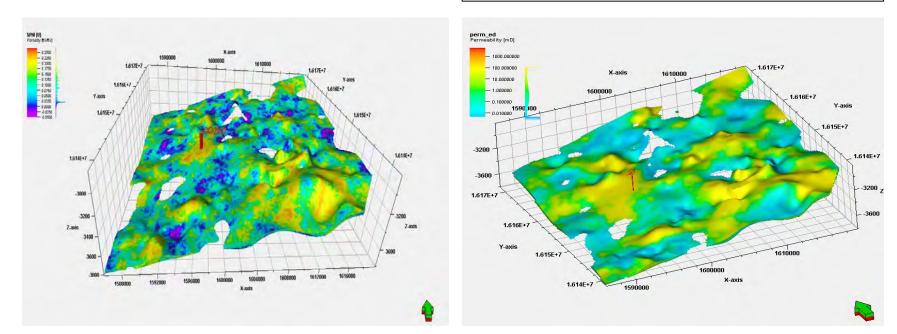
Geologic Modeling:

Proxy Property Modeling of the Minnelusa Formation

The property model:

- T52 N and R69 W (6x6 miles)
- Depth from 6982 to 7837 ft
- Opeche Shale Seal
- Minnelusa Formation: 7 stratigraphic intervals within the Minnelusa
- B Sand primary target
- One CO₂ injection well.

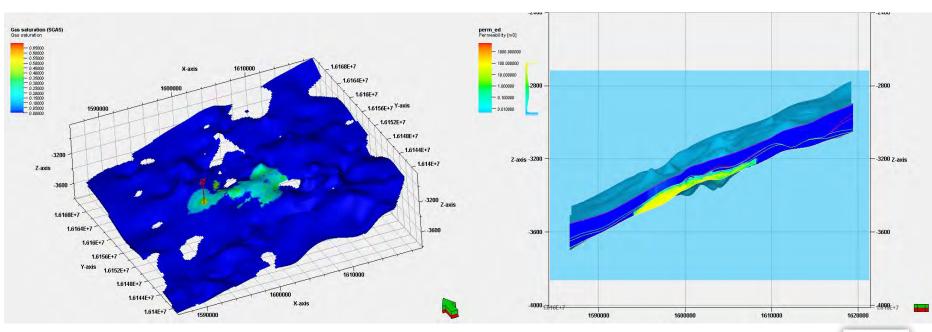
- Correlations: S. Fryberger and N. Jones
- Permeability (perm pore function): using Jiao et al., 2013
- Grid cells: is 451,584 (168x168x16), and X&Y:200 ft and Z=10 ft



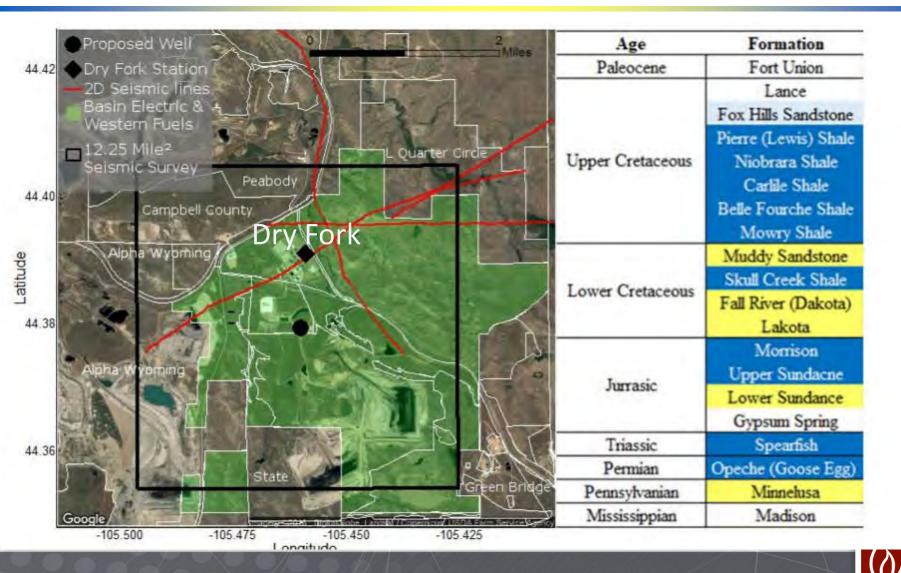
Geologic Modeling:

Porosity and Permeability Distributions of Minnelusa B Sandstone

The porosity of B sandstone ranges from 0.01% to 27% with mean of 11%


The permeability of B sandstone ranges from 0.004 to 100 mD with mean of 15.7 mD

CO₂ Injection to B Sandstone


- CO₂ plume after **25 year injection**
- The farthest front of the CO₂ plume from the injection well is **1.5 miles.**
- The injected CO₂ moved through Upper B Dolostone and reached the bottom of the Opeche Shale (caprock).

Next Steps: Storage Complex Feasibility

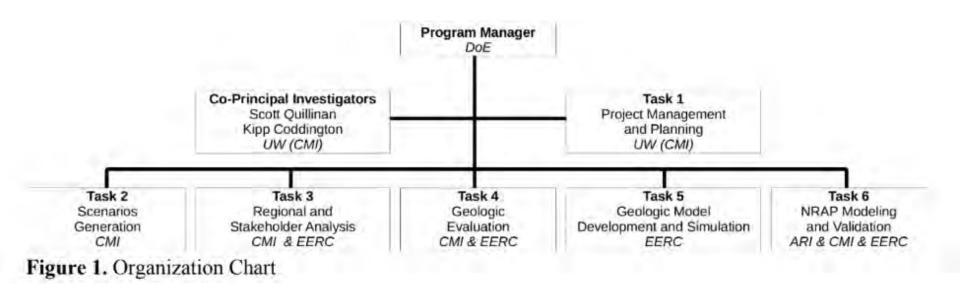
Phase II

Prefeasibility Summary (Accomplishments)

Plan for Commercial Scale CCUS

- Capable Coordination team: Experienced and diverse coordination team (Academia, Industry and Regulatory)
- ✓ CO₂ Source: Engaged Industry Partner- Coal fired power plant and the ITC CO₂ Capture and Utilization test facility
- ✓ CO2 Transport: Minimal transport, but existing statewide CO2 pipeline and pipeline ROW's
- ✓ Saline Storage: World class geologic reservoirs for storage
- ✓ Pore Space Ownership: Industry partner owns the pore space
- Regulatory: CCUS friendly regulatory environment, pending Application for WY Class VI primacy
- ✓ Induced seismicity: Low risk of induced seismicity
- ✓ **Public Acceptance:** This is coal country!
- ✓ Favorable Economics: Proximal EOR and CO₂ transport opportunity

Acknowledgements



Project Gantt Chart

Time	Timeline		Task Dependency					2017											2018						
Task	Description	1	2	3	4	5	6	J	F	M	A	M	J	J	A	S	0	Ν	D	J	F	M	A	M	J
1	Project Management and Planning		1	1												1									
1.1	Project management plan							ļ., .,																	
1.2	Reporting																								
1.3	Project management						-																		
1.4	Collaborative meetings	-			-	-	1																		
1.5	Kick-off meeting		1.1						-															151	
1.6	Outreach to potential DFCT members		-			1-	-																		
2	Scenarios Generation				1	-																			
2.1	Source & Transport Component Generation	х			1.1									T							1.1				
2.2	Storage Component Generation	x			11								-												
2.3	Scenario Component Combination and Screening	x																							
2.4	Scenario Prioritization	x		х	х	X	X																		
3	Regional and Stakeholder Analysis										-								-						
3.1	Economic assessment	х	X		1.0																				
3.2	Legal Assessment	x	X			1			-									-							
3.3	Environmental Assessment	x	X																	_	. 1			11	
3.4	Community and public outreach/assessment	х	x																						
4	Geologic Evaluation																								
4.1	Development of borehole catalog and risk assessment.	x	X																					511	
4.2	Subsurface Description	х	x																						-
4.3	Hydrostratigraphy Description	X	X		1															-				1.0	
4.4	Geophysical Description	x	x			1																		1 - 1	1
5	Geologic Model Development and Simulation				1	[-			-				-									
5.1	Geocellular Modeling	x			х			1.1																i E i	
5.2	Numerical Simulation	х			х		1			1.1	1														
5.3	Identification of Future Characterization Activities	x	X	х	x	-	х			-															
6	NRAP Modeling and Validation				1-						-														
6.1	NRAP Modeling	X			x																				
6.2	NRAP Comparison	x			X	X									~ 1										

Organization Chart

