Bench-scale Development of a Transformational Graphene Oxide-based Membrane Process for Post-combustion CO$_2$ Capture

DOE Contract No. DE-FE0031598

Shiguang Li, Gas Technology Institute (GTI)
Miao Yu, Rensselaer Polytechnic Institute (RPI)
Project overview

- **Performance period**: June 1, 2018 – Sep. 30, 2021
- **Funding**: $2,914,074 from DOE; $728,738 cost share
- **Objective**: Develop a transformational graphene oxide (GO)-based membrane process (GO²) for CO₂ capture with 95% CO₂ purity and a cost of electricity (COE) at least 30% lower than DOE amine reference baseline SC PC plant case

- **Team:**

<table>
<thead>
<tr>
<th>Member</th>
<th>Roles</th>
</tr>
</thead>
</table>
| ![gti](image) | • Project management and planning
• Quality control
• CO₂ capture performance tests |
| ![Rensselaer](image) | • GO membrane development and scale-up |
| ![Ohio State University](image) | • Scale-up of flat sheet GO membrane modules
• Process design and optimization |
| ![Trimeric Corporation](image) | • Technical & economic study |
GO membrane technology based on our work published in *Science* and *Nature Communications*

Science

Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation
Hang Li *et al.*
Science **342**, 95 (2013);
DOI: 10.1126/science.1236686

Nature Communications

ARTICLE

Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO$_2$-philic agent for highly efficient CO$_2$ capture
Fanglei Zhou1, Huynh Ngoc Tien2, Weiwei L. Xu2, Jung-Tsai Chen2, Qiuli Liu2, Ethan Hicks2, Mahdi Fathizadeh2, Shiguang Li3 & Miao Yu1
GO² process description

GO² process integrates a high-selectivity GO-1 membrane and a high-flux GO-2 membrane for optimal performance.
GO-1 and GO-2 membranes developed under laboratory-scale program (DE-FE0026383)

GO-1
(High selectivity)

Amine-functionalized GO flake (100~1,000 nm)

GO-2
(High flux)

Amine-functionalized GO quantum dot (3~8 nm)
Procedure developed for coating GO membranes on hollow fibers under lab-scale program (DE-FE0026383)

Polyethersulfone fiber

Coated fiber (GO-PZ) cross section

PES Hollow Fiber

16 nm

50 nm
1,000 GPU CO\textsubscript{2} permeance achieved in both sweep gas and vacuum permeation modes with selectivity >200

Sweep gas mode
- GO-PZ membrane
- Feed gas: 15% CO\textsubscript{2}/85% N\textsubscript{2} with saturated water vapor

Vacuum mode

<table>
<thead>
<tr>
<th>Membrane</th>
<th>Improved GO-PZ membrane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>75°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>85%</td>
</tr>
<tr>
<td>Feed gas</td>
<td>15% CO\textsubscript{2}/85% N\textsubscript{2}</td>
</tr>
<tr>
<td>CO\textsubscript{2} permeance, GPU</td>
<td>1080 ± 55</td>
</tr>
<tr>
<td>CO\textsubscript{2}/N\textsubscript{2} selectivity</td>
<td>650 ± 31</td>
</tr>
</tbody>
</table>
In addition to hollow fiber membranes, flat sheet membranes were successfully prepared by printing.
Overview/roadmap

Task 1: Project management and planning (throughout the project) → We are here

Membrane Development

BP1

- Task 2 – Development of GO membrane with area of 50-100 cm²
- Task 3 – Improvement of 50-100 cm² membranes towards higher selectivities
- Task 4 – Stability testing of membranes at near realistic flue gas conditions
- Task 5 – Scale-up of GO membrane modules to effective areas of 1000 cm²
- Task 6 – 100-h stability tests for GO membranes developed under Task 5

Process Development

BP2

- Task 7 – Design and construction of a GO² system

- Task 8 – Testing of the GO² system using NG flue gas
- Task 9 – Testing of the GO² system using coal flue gas
- Task 10 – TEA
Success criteria and key milestones

Success criteria:

<table>
<thead>
<tr>
<th>Decision Point</th>
<th>Date</th>
<th>Success Criteria</th>
</tr>
</thead>
</table>
| Go/no-go decision points | 3/31/20 | 1) Production of 50-100 cm² area membranes with CO₂/N₂ selectivity ≥200 and CO₂ permeance ≥1,000 GPU for the GO-1, and with CO₂/N₂ selectivity ≥20 and CO₂ permeance ≥2,500 GPU for the GO-2
2) Stability testing shows the CO₂ permeances and CO₂/N₂ selectivities decreased by less than 10% in the presence of flue gas contaminants |
| Completion of the project | 9/30/21 | 1) Production of 1,000 cm² area membranes with CO₂/N₂ selectivity ≥200 and CO₂ permeance ≥1,000 GPU for the GO-1, and with CO₂/N₂ selectivity ≥20 and CO₂ permeance ≥2,500 GPU for the GO-2
2) Testing with flue gas complete, 95% CO₂ purity validated
3) Final TEA report issued; final report submitted |

Key milestones set to effectively measure progress

- Each task has at least one milestone
Preliminary risk assessment: technical challenges and mitigation strategies

Challenges/Risks

1) Scaled membrane CO$_2$/N$_2$ separation performance not sufficiently high

 Mitigation:
 - 1a: Improve PES substrate quality
 - 1b: Identify new approaches to improve separation performance

2) 95% CO$_2$ purity not achieved

 Mitigation:
 - 2a: Improve process design

3) Cost of the process not in line with expected outcome

 Mitigation:
 - 3a: Increase CO$_2$ permeance for the membranes
 - 3b: Improve manufacturing process to lower membrane costs
Summary

- In a laboratory-scale program (DE-FE0026383), we have developed high-selectivity (GO-1) and high-flux (GO-2) graphene oxide-based membranes.

- In the current program, we will scale up the membranes for bench-scale development.

- The GO2 process integrates the GO-1 and GO-2 membranes offering a new opportunity to explore further reductions in the cost of CO$_2$ capture.

- The GO2 process will be tested at the NCCC with actual flue gas for CO$_2$ capture with 95% CO$_2$ purity.
Acknowledgements

- Financial and technical support

DOE NETL Steven Mascaro, José Figueroa and Lynn Brickett
The CCP4 Betty Pun and Mark Crombie
W.S. Winston Ho, The Ohio State University (OSU)
Andrew Sexton, Trimeric Corporation (Trimeric)

CO₂ Capture Project - Phase 4
Disclaimer

This presentation was prepared by Gas Technology Institute (GTI) as an account of work sponsored by an agency of the United States Government. Neither GTI, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors herein do not necessarily state or reflect those of the United States Government or any agency thereof.