the Energy to Lead

Pilot Test of a Nanoporous, Super-Hydrophobic Membrane Contactor Process for Post-Combustion CO₂ Capture

DOE Contract DE-FE0012829

Shiguang Li, Travis Pyrzynski, Naomi Klinghoffer, Timothy Tamale, James Aderhold, S. James Zhou, and Howard Meyer, *Gas Technology Institute (GTI)* Yong Ding and Ben Bikson, *Air Liquide Advanced Separations (ALaS)* Katherine Searcy and Andrew Sexton, *Trimeric Corporation (Trimeric)*

CO₂ Capture Technology Project Review Meeting

August 13 - 17, 2018, Pittsburgh, PA

Project overview

- Performance period: Oct. 1, 2013 June 30, 2019
- Total funding: \$13.7MM (DOE: \$10.6MM, Cost share: \$3.1MM)

Objectives:

- Build a 0.5 MW_e pilot-scale CO₂ capture system and conduct tests on coal flue gas at the National Carbon Capture Center (NCCC)
- Demonstrate a continuous, steady-state operation
- <u>Goal</u>: achieve DOE's goal of 90% CO₂ capture rate with 95% CO₂ purity at a cost of \$40/tonne of CO₂ captured by 2025

Team:	Member	Roles	
	gti.	Project management and planning	
		 Process design and testing 	
		• Membrane and module development	
	TRIMERIC CORPORATION	Techno-Economic Analyses (TEA)	
	NCCC	Site host	

qti

What is a membrane contactor?

High surface area membrane device that facilitates mass transfer Gas on one side, liquid on other side

- Membrane does not wet out in contact with liquid
- Separation mechanism: CO₂ permeates through membrane, reacts with the solvent; N₂ does not react and has low solubility in solvent gti

Technical <u>challenges</u> of applying HFMC to existing coal-fired plants

- Performance Overall mass transfer resistance consists of three parts
 - Minimize each resistance
- Module design and durability Longterm membrane wetting in contact with solvent
 - Make membrane surface super hydrophobic
 - Improve membrane potting to provide good seal between the liquid and gas sides
- Fouling Flue gas contaminants and/or particulates may affect performance
 - Determine required pretreatments

Scale-up and cost reduction

Make larger diameter modules

- Overall mass transfer coefficient K (cm/s)
 - In the gas phase, k_g
 - In the membrane, $\vec{k_m}$
 - In the liquid phase, **k**₁
- *H_{adim}:* non-dimensional Henry's constant
- E: enhancement factor due to reaction

PEEK (-{_______}) characteristics and advantages of PEEK HFMC

Exceptional thermal & mechanical resistances

Polymer	Tensile modulus (GPA)	Tensile strength (MPa)	Max service temperature (°C)
Teflon™	0.4-0.5	17-21	250
Polysulfone	2.6	70	160
PEEK	4	97	271

- Hollow fibers w/ high CO₂ flux and packing density

PEEK HFMC advantages (compared to conventional absorbers)

- High packing density results in over 100x increase in mass transfer coefficient, and thus much smaller equipment size
- **Reduction in weight** for over 30%
- Reduction in footprint due to versatile modular layout
- Easy scaleup by adding membrane modules
- Flexibility: commercial solvent aMDEA being used; advanced solvents can be used for additional savings
- Reduction in solvent degradation due to an indirect contact of flue gas contaminants and solvent

5

PEEK = Polyether Ether Ketone

Module scaled to 8-inch by ALaS and tested at GTI with aMDEA solvent using air/CO₂ mixed feed

- Intrinsic CO₂ permeance: 2,000 GPU
- Improved mass transfer coefficient of 2.0 (sec.)⁻¹ obtained in lab CO₂ capture testing

GPU= Gas Permeation Unit, 1 GPU = 3.348 x 10⁻¹⁰ mol/m²/s/Pa

$\rm 0.5~MW_{e}$ pilot plant designed, constructed and installed at the NCCC

Process description

Initial tests with 4 modules and flue gas at NCCC indicates DOE's technical target can be achieved

CO₂ removal rate:

CO₂ purity: > 98.6% CO₂

qt

Issues observed: 1) water vapor capillary condensation in PEEK pores, 2) concentration polarization

Concentration polarization issue was resolved by decreasing aMDEA concentration

Issues resolved, steady state performance achieved for a single module during 224-h continuous testing

12

qτ

Examples of parametric testing results

Continuous testing with 28 membrane modules performed during May-June 2018

Timeline

- May 25-30 (0-133 h): testing with all 28 membrane modules (A-G clusters)
- May 30-June 12 (133-430 h): testing with better performance clusters A, E, F continued (clusters B, C, D, and G isolated during this period)
- Integrated absorption/desorption worked properly during testing
 - CO₂ purity target met, with CO₂ purity >99% during the long term testing

Solvent regeneration system reliable

- Rich and lean solvent samples collected daily and the CO₂ loadings analyzed by NCCC's lab indicate solvent regeneration worked as HYSYS predicted
- Solvent analysis indicates solvent oxidation and thermal degradation was not an issue during our continuous operation

	Fresh solvent	Used solvent
Ratio of amine to activator (normalized)	1.00	1.04
Concentration of degradation products	< 0.01 wt. %	< 0.3 wt. %
Concentration of metals	Below detection limit	< 0.002 wt. %

Continuous testing with 28 membrane modules performed during May-June 2018 (Cont'd)

Membrane absorption: CO₂ capture performance declined with time

• Fault tree analysis (FTA) ongoing, two major issues identified

Issue 1: potential reproducibility of membrane module fabrication

 In order to evaluate the consistency of capture for the individual modules, the temperature rise of the amine was measured for each module. The measured temperature rise varied from the expected value of ~22 °F down to 4 °F, indicating some modules were not functioning well

Approaches to resolve the issue

- ALaS to further improve membrane module fabrication
- GTI to conduct QA/QC tests (CO₂ permeation and water flow ∆P tests) for selecting membrane modules

gti

Issue 2: potential partial blockage of hollow fibers

Approaches to resolve the issue

- Additional filtration before the membranes
- Add pre-scrubber as needed

17

gti

Future plans

Summary

- Commercial 8-inch-diameter membrane modules with intrinsic CO₂ permeance of 2,000 GPU fabricated for pilot scale testing of the PEEK HFMC technology (preliminary TEA based on bench-scale field testing: PEEK HFMC costs 16% less than DOE Case 12)
- 0.5 MW_e pilot plant designed, constructed, installed, and being tested at NCCC
- Achieved steady state CO₂ capture performance with single module during our 224-h continuous operation at NCCC
- Continuous testing with 28 membrane modules did not match single module results
 - Fault tree analysis ongoing
 - Some potential issues and approaches to resolve the issues identified
 - Plan to resume testing after we resolve the issues

Acknowledgements

Financial and technical support

- DOE NETL: Steven Mascaro, José Figueroa and Lynn Brickett
- Southern Company Services: National Carbon Capture Center

Disclaimer

This presentation was prepared by Gas Technology Institute (GTI) as an account of work sponsored by an agency of the United States Government. Neither GTI, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors herein do not necessarily state or reflect those of the United States Government or any agency thereof.