

Energy Efficient GO-PEEK Hybrid Membrane Process for Post-combustion CO₂ Capture

DOE Contract No. DE-FE0026383

Shiguang Li Gas Technology Institute (GTI)

Miao Yu

University of South Carolina (USC), and Rensselaer Polytechnic Institute (RPI)

Yong Ding

Air Liquide Advanced Separations (ALaS)

CO₂ Capture Technology Project Review Meeting

August 13 - 17, 2018, Pittsburgh, PA

Introduction to GTI

- Research organization, providing energy and environmental solutions to the government and industry since 1941
- Facilities: 18 acre campus near Chicago

GO-PEEK project overview

- **Performance period**: Oct. 1, 2015 Sep. 30, 2019
- **Funding**: \$1,999,995 from DOE; \$500,000 cost share
- Objectives: Develop a hybrid membrane process combining a graphene oxide (GO) gas separation membrane unit and a PEEK hollow fiber membrane contactor (HFMC) unit to capture ≥90% of the CO₂ from flue gases with 95% CO₂ purity at a cost of electricity 30% less than the baseline CO₂ capture approach

gti

3

GO = graphene oxide; PEEK = polyether ether ketone; HFMC = hollow fiber membrane contactor

GO membrane technology based on our work published in *Science* and *Nature Communications*

ARTICLE

DOI: 10.1038/s41467-017-02318-1

OPEN

Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO₂-philic agent for highly efficient CO₂ capture

Fanglei Zhou¹, Huynh Ngoc Tien², Weiwei L Xu², Jung-Tsai Chen², Qiuli Liu², Ethan Hicks ⁰/₂, Mahdi Fathizadeh ⁰/₂, Shiguang Li³ & Miao Yu¹

4

Singular PEEK HFMC technology currently at pilot scale development stage (DE-FE0012829)

Membrane contactor: high surface area device that facilitates mass transfer

Commercial-sized (8-inch-diameter) modules with intrinsic CO₂ permeance of ~2,000 GPU used in pilot scale testing

Achieved steady state performance during 224-h continuous testing with a single 8inch-diameter module at NCCC with actual flue gas

Process description

- GO-PEEK uses a conventional gas separation membrane unit to capture bulk of the CO₂ from coal-fired flue gas followed by a PEEK HFMC unit to further capture CO₂ to achieve DOE's technical target
- Takes advantages of the "Pros" of two processes while overcoming their "Cons", offering opportunity to explore further reductions in CO₂ capture cost

GO-PEEK technical goals

7

Progress on PEEK Membranes

Under the current program, we have been developing PEEK fibers with intrinsic CO₂ permeance of 3,000 GPU

1 GPU = 3.348 x 10⁻¹⁰ mol/m²/s/Pa

3rd Gen fibers developed; 2-inch-diameter module using the fibers showed CO₂ permeance >3,000 GPU

PEEK membrane module effective in capturing CO₂ from low CO₂-concentration feeds in membrane contactor

Goal of mass transfer coefficient > 3 (sec)⁻¹ achieved

gti

Progress on GO Membranes

<u>**GO</u>**: single-atomic layered, oxidized graphene</u>

Procedure developed for coating GO membrane on the inside surface of the hollow fiber (HF) support

fiber

PES = polyethersulfone

Challenge: initial GO membrane performance needed significant improvement

- Initial GO membrane performance under simulated flue gas condition (humidified 15%/85% CO₂/N₂ mixture):
 - CO₂ permeance: 100 GPU; selectivity: 49

Approaches to improve CO₂ permeance

Create more structural defects on GO flake by HNO₃ etching

Reduce GO flake lateral size by ultra-sonication

W/O ultra-sonication

W/ ultra-sonication

15

Approach to improve CO_2/N_2 selectivity: fill the space between GO layers with CO_2 -philic agent

 CO₂-philic agent enables facilitated transport mechanism to separate CO₂ from N₂

CO₂-philic agent example: piperazine (PZ)

 XPS and FTIR analysis confirmed the crosslinking of PZ with GO sheets

Cross-sectional SEM of the PZ filled GO membrane

GO-PZ membrane separation performance

18

Facilitated transport mechanism

• CO_2 : $2CO_2+2RR'NH+H_2O \Rightarrow RR'NCOOH+RR'NH_2^++HCO_3^-$

 $CO_2 + RR'R''N + H_2O \Leftrightarrow RR'R''NH^+ + HCO_3^-$

N₂ has no enhancements and moves only by diffusion

50-h testing showed variation of performance: humidity may be controlled to achieve the best performance

GO-based membranes showed good stability in the presence of flue gas contaminants

GO-PZ and GO-EDA membranes also stable in the presence of flue gas contaminants

21

gti.

In addition to sweep gas mode, we also tested GObased membranes with permeate side under vacuum

Feed mixture: 15%CO₂/85%N₂ saturated with H₂O vapor; temperature: 75 °C

>1,000 GPU CO₂ permeance achieved in vacuum mode with improved membrane and optimized humidity

Membrane	Improved GO-PZ membrane
Temperature	75 °C
Humidity	85%
Feed gas	15% CO ₂ /85% N ₂
CO ₂ permeance, GPU	1080 ± 55
CO ₂ /N ₂ selectivity	650 ± 31

Future work overview/roadmap

In this project

After this project

Bench-scale development for GO-based membranes (DE-FE0031598)

gti

Summary

- We are developing a transformational hybrid process for CO₂ capture combining a conventional gas membrane unit and a HFMC unit
- The 3rd Generation PEEK fiber developed to date
 - Fibers with intrinsic CO₂ permeance >3,000 GPU at 25°C demonstrated in 2-inch-diameter modules
 - A 2-inch-diameter module containing 3rd generation fibers effective in capturing CO₂ from low CO₂-concentration feeds with aMDEA solvent
- **GO-based membrane** developed to date
 - CO₂ permeance > 1,000 GPU and α_{CO_2/N_2} > 600 achieved both in sweep gas and vacuum permeation modes using simulated coal flue gas
 - Good stability in the presence of flue gas contaminants
- Future work will focus on integrated GO-PEEK process testing and TEA

Acknowledgements

Financial and technical support

- **DOE NETL Steven Mascaro. José Figueroa and Lynn Brickett**
- Dr. Yu Group
 - Fanglei Zhou
 - Hongchao Mao
 - Huynh Ngoc Tien
 - Jarvis Chen
 - Mahdi Fathizadeh

Disclaimer

This presentation was prepared by Gas Technology Institute (GTI) as an account of work sponsored by an agency of the United States Government. Neither GTI, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors herein do not necessarily state or reflect those of the United States Government or any agency thereof.