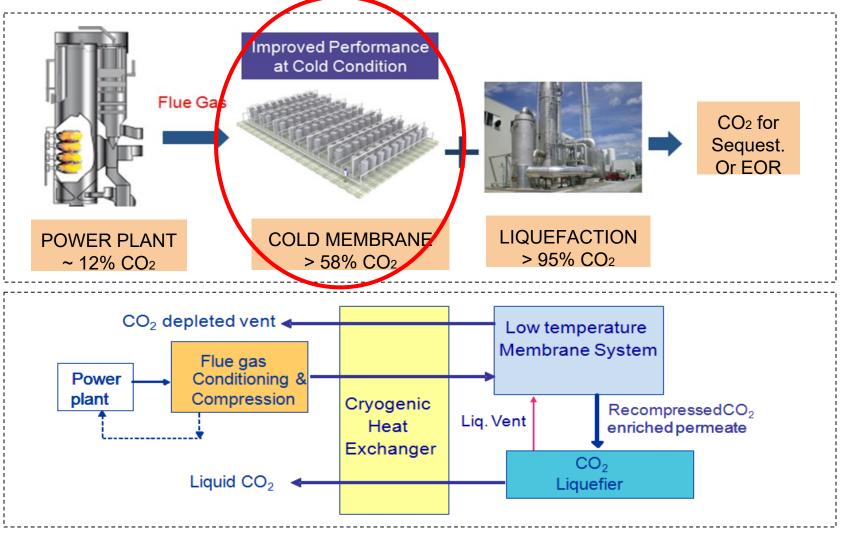

2019 NETL CO₂ Capture Technology Project Review Meeting:

Bench Scale Testing of Next Generation Hollow Fiber Membrane Modules (DE-FE0026422)

Shilu Fu

shilu.fu@airliquide.com


Aug. 26th, 2019

Shilu Fu, D. Hasse, S. Kulkarni, R. Swaidan | R&D T. Poludniak, J.-M. Gauthier | ALAS Brad Knutson, Louis Wheat, John Cole| Parsons

Air Liquide Capture Technology Summary

Air liquide hybrid <u>cold membrane + liquefaction</u> process

Project Overview

Project target: CO₂ capture from coal fired power plant flue gas with AL cold membrane technology at \$40/tonne:

Total Budget: \$4.3MM, DOE Funding - \$3.3MM, AL Cost Shares - \$1.0MM *Period of Performance:* 10/01/2015 through 06/30/2019 over 2 budget periods (extended to Dec. 2019)

	Expenditures
Budget Period 1 (Oct 2015- June 2017)	\$1,600,000
Budget Period 2 (Jul 2017- Dec 2019)	\$2,700,000

NETL Project Manager: Andrew O'Palko **Project Partners:**

- Air Liquide R&D (project executive) David Hasse, Andrew Hamilton, Sudhir Kulkarni, Trapti Chaubey, Ted Li, Alex Augustine, Jiefu Ma, Dean Kratzer, Judy Huss, Dennis Calvetti, Gerard Gagliano, Deborah Hutchinson, Raja Swaidan
- MEDAL/ALAS (Membrane manufacturing) Tim Południak, Jean-Marie Gauthier
- E&C (Engineering support)- Pierre-philippe Guerif, Abigail Bonifacio
- Parsons (TEA validation) Brad Knutson, Louis Wheat, John Cole

Test partner – National Carbon Capture Center

PARSONS

Project Schedule & Status

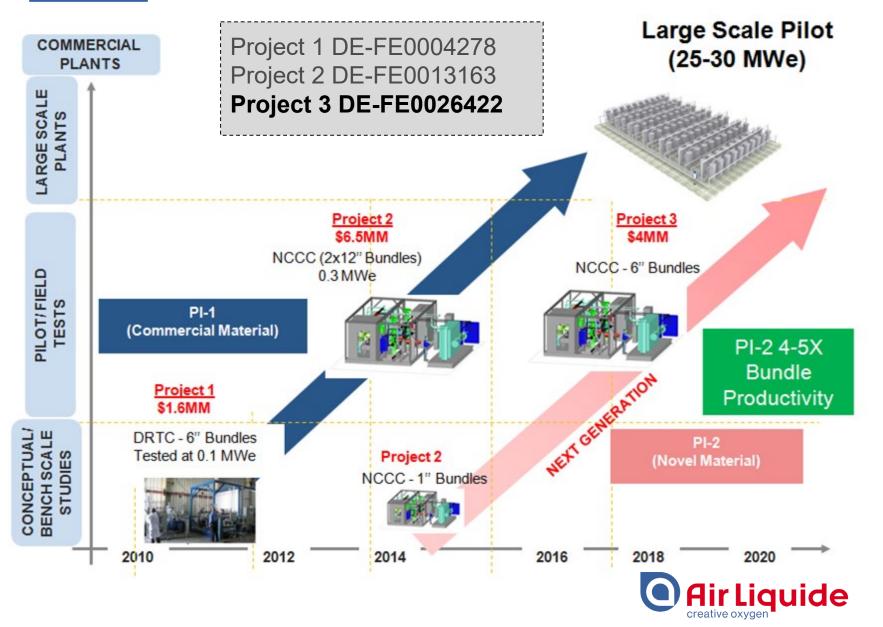
Main Tasks	Milestones/ Success Criteria	Status				
BUDGET PERIOD 1 (BP1) Oct 2015 to June 2017						
Design/manufacture 4" PI-2 bundles	 ✓ Four bundles fabricated ✓ Performance achieved target: >90 Nm³/h feed, 90% CO₂ recovery, >58% CO₂ purity 	COMPLETED				
Identify other hybrid processes with possibility of economic feasibility	✓ Eight cases considered, five evaluated	COMPLETED				
BUDGET PERIOD 2 (BP2) July 2017 to December 2019						
Design/manufacture 6" PI-2 bundles	✓ Seven bundles fabricated	COMPLETED				
Field Test at NCCC at 0.3 MWe scale	 ✓ Performance achieved: >400 Nm³/h feed, 90% CO₂ recovery, >58% CO₂ purity ✓ 500-hour long-term stability test 	COMPLETED				
	Extended parametric testing to investigate industrial CO ₂ source applications	Dec. 2019				
TEA	✓ CO_2 capture cost evaluated for five cases	COMPLETED				

1. Technology Overview

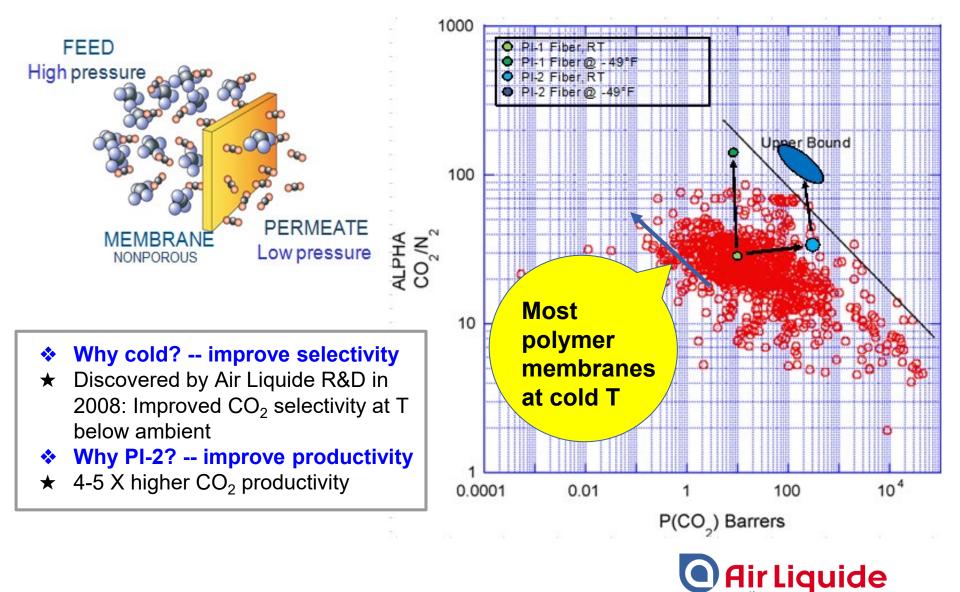
2. Membrane Manufacturing

3. NCCC Field Test

4. TEA



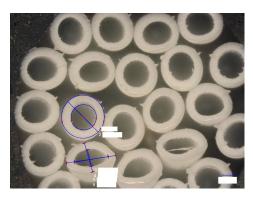
1. Technology Overview



AL Cold Membrane -CO2 capture Technology Roadmap

7

Motivation: Membrane? Why cold? Why PI2


2. Membrane Manufacturing

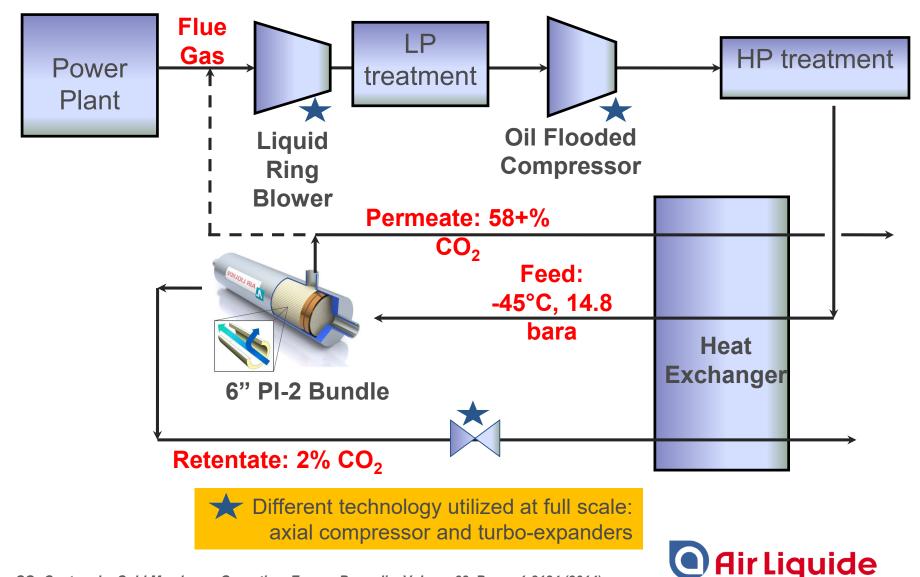
Membrane Bundle Fabrication

Date	Equipment	Comments
Jun-2016	DSU	1 st forming campaign (2 x 4") – good
Dec-2016	DSU	2 nd forming campaign (2 x 4") – good
May-2017	DSU	3 rd forming campaign (1 x 6") – good
Oct-2017	DSU	4 th forming campaign (2 x 6") – good
Feb-2018	Manuf. (24 fil)	5 th forming campaign (4 x 6") – good

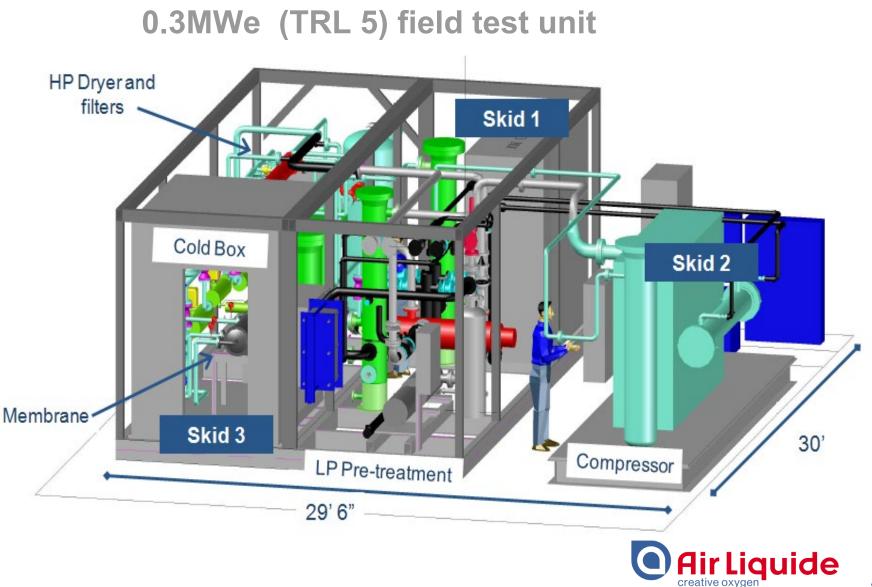
All 4-4" & 7-6" bundles passed QC, proving the robustness of ALAS technique in manufacturing PI-2 membranes

microscope image of 24-filaments PI-2

wash can of PI-2 fiber


Two prototype bundles creative oxygen

3. NCCC Field Test



Process Flow Diagram - NCCC 0.3 MWe field test unit

CO₂ Capture by Cold Membrane Operation, Energy Procedia, Volume 63, Pages 1-8184 (2014)

Membrane skid at NCCC

Membrane skid at NCCC

PI-2 validation with real flue gas at NCCC

PO-5 (May – Nov 2016)

under the previous DOE-AL project of DE-FE0013163

Long term test PI-2 1" permeator (~ 500 hours, 50% CO₂ capture)

PO-7 (Oct 17 – May 18):

- Validate enhanced performance with real flue gas
- Parametric testing 6" PI-2 bundles

PO-8 (Feb 19 – May 19):

- Long term test with PI-2 (> 500 hours, 90% capture)
- Parametric testing 6" PI-2 bundles

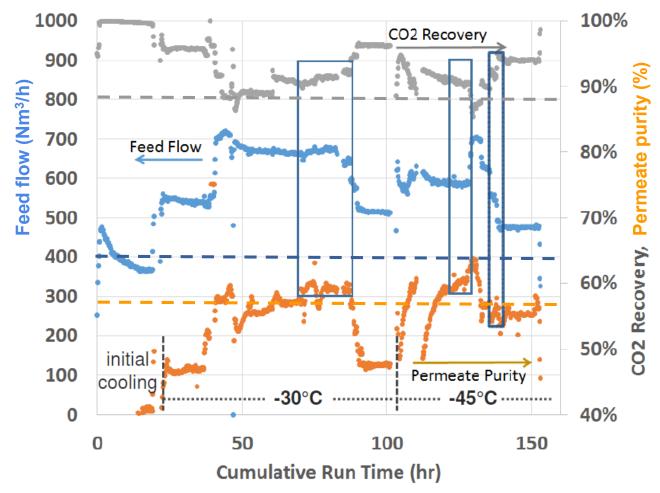
PO-8 (Current):

 Extended parametric testing on 6" PI-2 bundles to investigate industrial CO₂ source application Complete

Complete

Complete

Complete


Complete

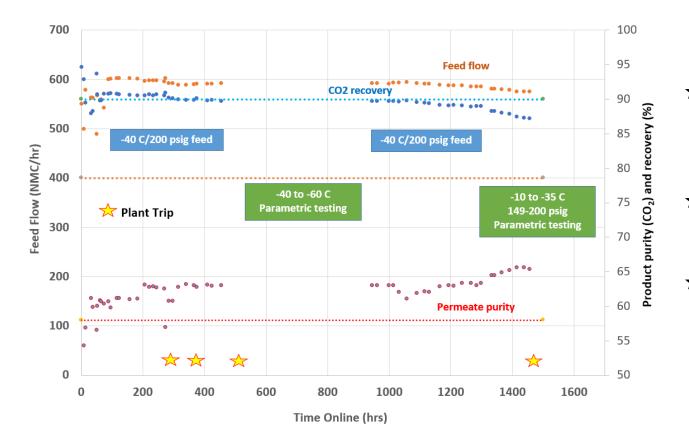
On-going

Dec. 2019

r **Liquide**

PI-2 6" membrane bundle test at NCCC (2018)

- ★ Parametric: T, feed flow
- ★ Significant high processability of >600 Nm³/h


 ★ Reached target at T of -30 °C, potential further energy saving

All: 14.8 bara, 18% CO₂

Performance target: >400 Nm³/h feed @ 90% CO₂ recovery, >58% CO₂ purity

PI-2 6" membrane bundle stability test at NCCC (2019)

- ★ Bundle performance significantly exceeded target
- ★ > 700-hour stable performance
- ★ Performance drop due to extreme cold temp. at -60 °C

All: 14.8 bara, 18% CO₂

Performance target: >400 Nm³/h feed @ 90% CO₂ recovery, >58% CO₂ purity

Agenda

4. TEA

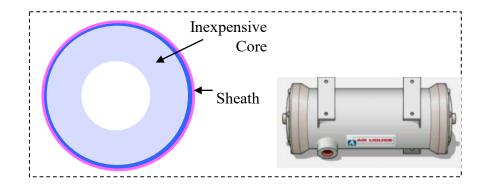
Techno-Economic Analysis

- 1. PI-2 membrane development
- 2. Process design optimization

Objective: CO₂ capture from a commercial power plant, 550MWe (net), 12,000 tpd, at \$40/tonne by 2025

	Case 11	Case 12	PI-1 (90%) Previous DOE-AL Project of DE-FE0013163	PI-2 (90%) Current DOE-AL Project of DE-FE0026422
Power Plant Cost (MM\$)	906	1,602	1,440	1,349
CO ₂ Capture System (MM\$)		469	355	244
CO ₂ Capture Cost w/o T&S (\$/tonne)		42	36	32
LCOE w/o T&S (mills/kWh)	75	141	130	127

Base case provided by DOE reference:


• Case 11 -- base case, current coal fire power plant without CO_2 capture

- Case 12 -- CO₂ capture with Amine adsorption
- ★ Both PI-1 and PI-2 cold membrane capture technologies exceed the target of \$40/tonne.
- ★ With 3 years of development within AL, PI-2 membrane further lower the CO₂ capture cost for ~ \$4/tonne.

Conclusions

- 1. AL next generation PI-2 cold membrane CO_2 capture technology is a Low-Cost solution with ~ \$32/tonne.
 - Ground-breaking membrane with high productivity
- 1. The membrane performance has been validated with > 3000 hours testing with real flue gas at NCCC.
- 2. Full scale **TEA** has been conducted and validated by a third party.
 - ALAS has well-established membrane manufacturing technology
 - All major equipment are standard and being utilized by AL ASUs, not FOAK.
- 1. Future/ongoing:
 - Actively seeking for future partner for larger scale testing.

Acknowledgement / Disclaimer

- US DOE: Andrew O'Palko, Sheldon Funk, José Figueroa
- NCCC Team: Frank Morton, Tony Wu, Bob Lambrecht, Graham Bingham
- Air Liquide: Andrew Hamilton, Dave Hasse, Dennis Calvetti, Gerard Gagliano, Alex Augustine, Trapti Chaubey, Sudhir Kulkarni, Tim Poludniak, Ted Li, Judy Huss, Raja Swaidan
- Some material in this presentation is based on work supported by the Department of Energy National Energy Technology Laboratory under Award Number DE-FE0004278 (completed), DE-FE0013163 (completed), and DE-FE0026422.

"This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Research & Development Opening new ways

THANK YOU FOR YOUR ATTENTION

