

OVERCOMING BARRIERS TO ADVANCE FOSSIL ENERGY TECHNOLOGIES

Shannon Angielski, Executive Director, CURC 2018 NETL CO₂ Capture Technology Project Review Meeting Pittsburgh, PA August 13, 2018

Carbon Utilization Research Council (CURC) Members

Coal Producers

Arch Coal, Inc. Cloud Peak Energy Resources LLC * Lignite Energy Council Peabody*

Equipment Suppliers

B&W Power Generation Group, Inc. General Electric* Mitsubishi Heavy Industries America, Inc. (MHIA)

Labor Unions

United Mine Workers of America International Brotherhood of Boilermakers International Brotherhood of Electrical Workers

<u>NGOs</u>

ClearPath Action EnergyBlue Project

Technology Developers

Jupiter Oxy Corp NET Power

Research Organizations

Battelle

Electric Power Research Institute (EPRI) Gas Technology Institute University of North Dakota Energy & Environmental Research Center

State Organizations

Energy Industries of Ohio Greater Pittsburgh Chamber of Commerce Illinois Coal Association Kentucky Energy & Environment Cabinet Southern States Energy Board West Virginia Coal Association Wyoming Infrastructure Authority

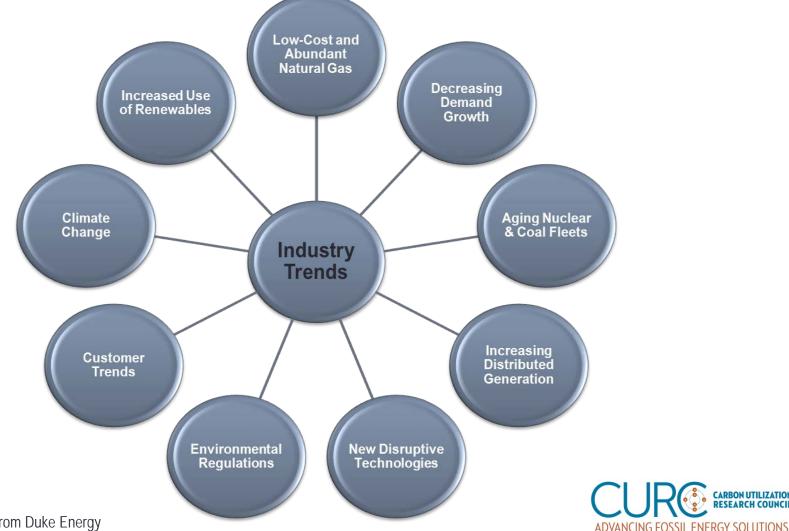
Trade Associations

American Coal Council American Coalition for Clean Coal Electricity (ACCCE) Edison Electric Institute (EEI) National Rural Electric Cooperative Association (NRECA)

Universities

Lehigh University Ohio State University Pennsylvania State University Southern Illinois University University of Kentucky/CAER University of Wyoming West Virginia University

Utilities


American Electric Power (AEP) Basin Electric Power Cooperative* Duke Energy Services LG & E and KU Services Company Southern Company* Tri-State Generation & Transmission Association

> Companies in orange indicate Steering Committee Members

*CURC Leadership Council

Forces Impacting Power Sector Technology Innovation in the U.S.

CARBON UTILIZATION **RESEARCH COUNCIL**

3 Modified from Duke Energy

The 2018 CURC-EPRI Advanced Fossil Energy Technology Roadmap

- Represents a plan for delivering cost-competitive, low to zero-carbon emission fossil-fueled power plant technologies between 2025-2035.
- Identifies industry RD&D priorities and the publicprivate sector investments needed to bring technologies to the commercial marketplace.
- Informs policymakers on technology direction and annual budget needs to achieve Roadmap goals.
- Analyzes and communicates the potential benefits of U.S. fossil energy innovation.

2018 Roadmap Cost and Performance Goals

- Performance targets for technologies in 2025 and 2035 to enable candidate replacement options for aging fleet.
- Cost Targets:
 - New Coal Unit with 90% Carbon Capture:
 - 2030 20% reduction in COE compared to a new unit with CCS built in 2015
 - 2040 40% reduction in COE compared to a new unit with CCS built in 2015
 - New Natural Gas Unit with 90% Carbon Capture:
 - 2030 15% reduction in COE compared to a new unit with CCS built in 2015
 - 2040 30% reduction in COE compared to a new unit with CCS built in 2015
 - 90% CO₂ capture represents typical DOE convention of modeling CCS costs and performance (is only intended to be a target).
- Majority of technologies support both coal and natural gas applications.

2018 Roadmap RD&D Pathways to Achieve Cost and Performance Targets

- Identifies RD&D for existing coal and natural gas fleet.
- Defines RD&D priorities for new fossil energy systems that include CCUS.
- Forecasts accelerated RD&D needs to facilitate breakthroughs on new transformational technologies that:
 - Yield highly efficient electricity generation while facilitating CO₂ emissions reductions at a lower energy penalty and cost.
 - Represent a "step-change" improvement in cost, flexibility of operations, efficiency and performance relative to current technologies.
- Emphasizes carbon capture RD&D focused on reducing the costs associated with carbon capture.
- Includes RD&D for evaluating carbon storage potential and CO₂ utilization pathways.

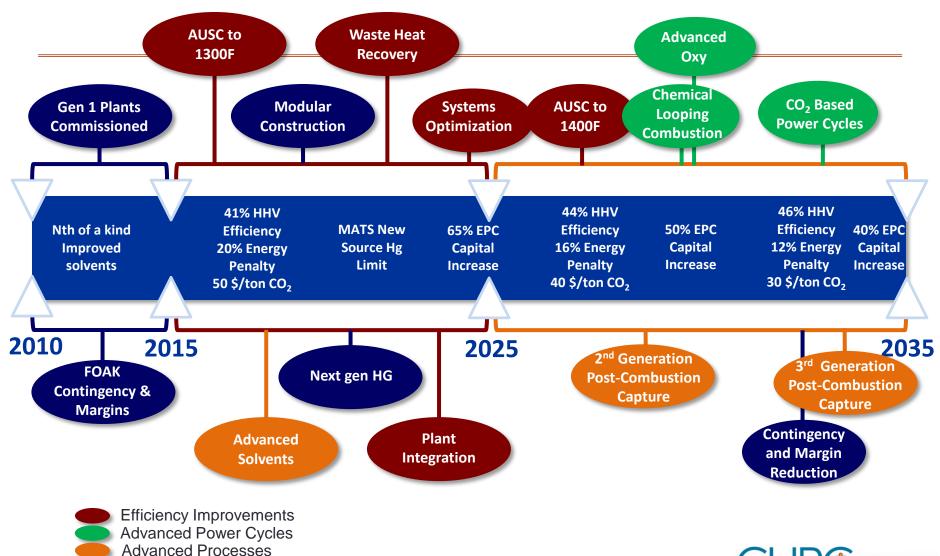
2018 Roadmap RD&D Pathways to Achieve Cost and Performance Targets

New Plants

- AUSC systems with CCUS
- Transformational Energy Conversion Systems*
 - Pressurized Oxygen
 Combustion
 - Chemical Looping (CLC)
 - Supercritical CO₂ cycles (sCO₂)
 - Gasification
 - Hydrogen Generator
- Natural Gas systems

*New process technologies that facilitate improved and lower cost CO_2 capture

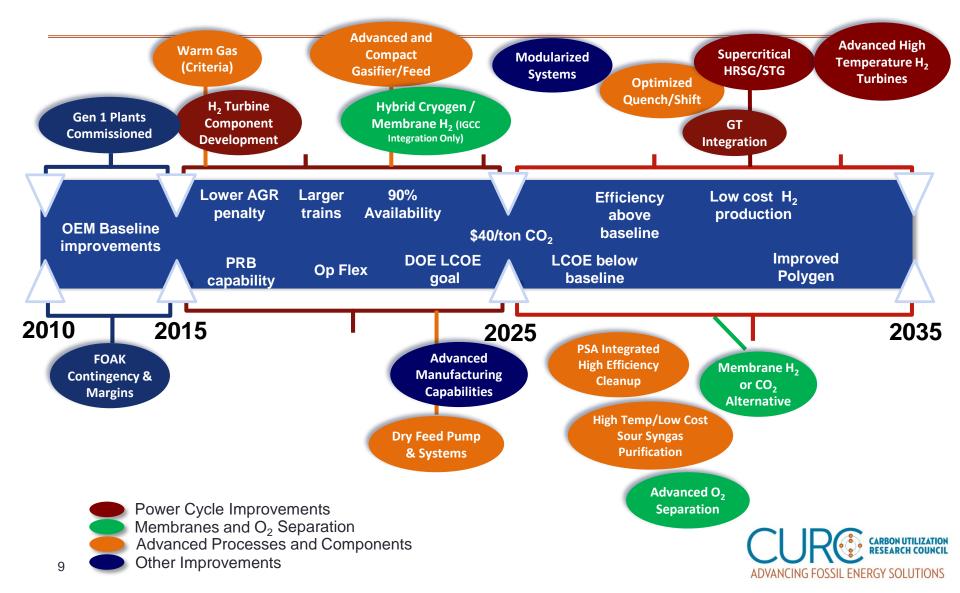
Existing Plants


Cross-Cutting Programs

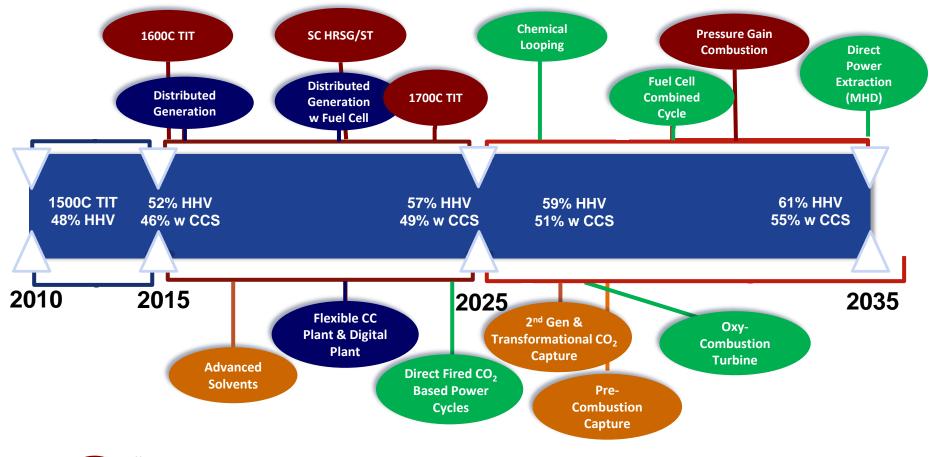
- A-USC Materials
- Carbon Capture
- Carbon Storage
- Turbines
- Fuel Cells
- Sensors & Controls
- Breakthrough
- Water management

Technology programs in blue are cross-cutting for coal and natural gas

Transformational Technologies Roadmap



ADVANCING FOSSIL ENERGY SOLUTIONS

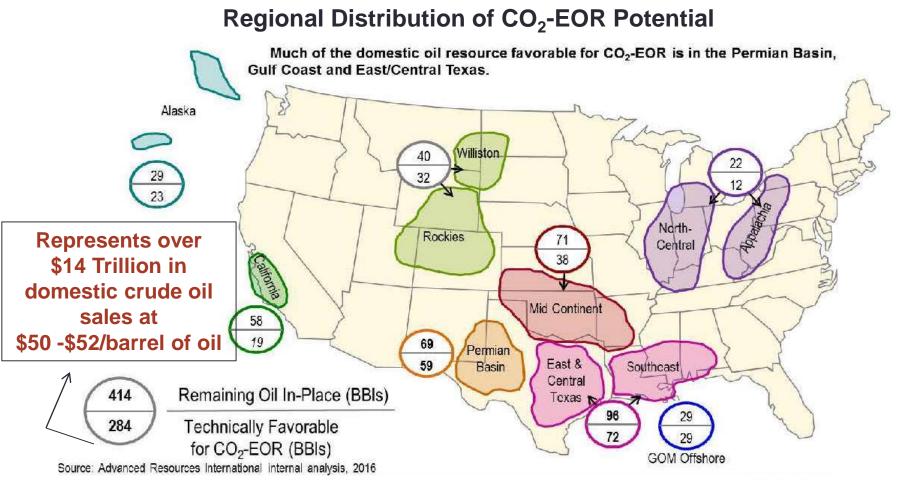

CARBON UTILIZATION RESEARCH COUNCIL

Other Improvements

Gasification Roadmap

Natural Gas Roadmap

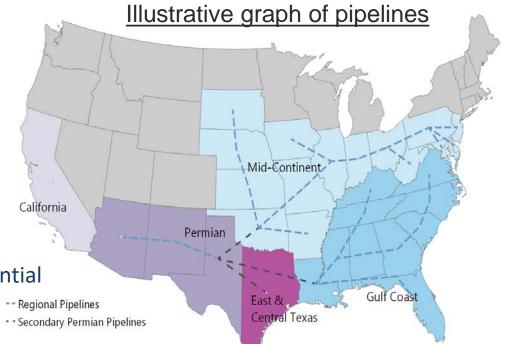
Efficiency Improvements
 Advanced Power Cycles
 Advanced Processes
 Other Improvements


CURC-ClearPath Foundation Companion Macroeconomic Benefits Study

- Collaboration between the private sector and the federal government can produce affordable technologies to mitigate CO₂ emissions from coal and natural gas-fueled power plants.
- Early deployment of these technologies will primarily be driven by the use of CO₂ to enhance oil production from partially depleted domestic oil reservoirs.
- The study evaluates the potential economic benefits of RD&D to reduce the cost of Carbon Capture, Utilization, and Storage (CCUS) through market-driven deployment of CCUS.
- Study commissioned by CURC and ClearPath Foundation, with support from the International Brotherhood of Boilermakers, Iron Ship Builders, Blacksmiths, Forgers & Helpers; the International Brotherhood of Electrical Workers; and the United Mine Workers of America.
- Modeling done by NERA Economic Consulting and Advanced Resources International with analysis by Doug Carter.

DVANCING FOSSIL ENERGY SOLUTIONS

11


Economic Potential of CO₂-EOR in the US

Key Study Assumptions

- Enhanced oil recovery is the only economic use for captured carbon dioxide
- Lowest cost power dispatches
- Status quo regulatory policy
- Capital charge adder to reflect potential financing challenges

 Cost of technology consistent with *CURC-EPRI Roadmap* for both coal & natural gas systems

Regions with significant EOR potential were excluded from the study (Rocky Mountain Corridor, North Dakota, Ohio) because of the availability of lower cost natural or industrial sources of CO2 as well as relatively flat load growth or demand.

for illustrative purposes only*

Study Results: Benefits to the U.S. from CCUS RD&D

Making Carbon a Commodity: The Potential of Carbon Capture RD&D

- If an RD&D program is implemented that achieves the Roadmap cost targets, market-driven deployment of 62 to 87 GW of carbon capture power-sector projects under certain scenarios can be enabled by 2040.
- By 2040, the macroeconomic potential of undertaking the Roadmap are:

Scenarios	EOR-based Benefits		Electricity-based Benefits		Total Benefits	
	GDP (\$B)	Jobs	GDP(\$B)	Jobs	GDP(\$B)	Jobs
1a & 1b	95	392,215	44	301,805	140	694,020
2a & 2b	97	407,410	38	260,214	135	667,624
3a & 3b	111	456,108	55	375,616	166	831,724
4a & 4b	47	191,422	30	207,017	77	398,439

ADVANCING FOSSIL ENERGY SOLUTIONS

Projected Environmental Benefits from Implementing the Roadmap

- Aggressive reduction of water use and criteria air emissions, including nitrogen oxides (NOx), sulfur dioxide (SO₂), mercury (Hg) and particulate matter (note that these reductions are from today's already reduced emissions levels)
- Reduction of CO₂ emissions

What is Needed to Implement Roadmap?

 Increased federal funding for R&D, piloting and commerciallydemonstrating innovative technologies capable of competing in the commercial marketplace.

Current Federal Budget for	Average Annual Roadmap
Coal CCS & Power Systems	Budget
\$430 million	\$760 million

- Additional legislative efforts that will support Roadmap:
 - Already-enacted FUTURE Act, extending and expanding Section 45Q carbon sequestration tax credits
 - Legislation authorizing robust RD&D budgets targeting Roadmap goals
 - S. 2803, the Fossil Energy Utilization, Enhancement and Leadership (FUEL) Act of 2018
 - H.R. 5745, the Fossil Energy Research and Development Act
 - S. 1460, the Energy and Natural Resources Act
 - S. 2602, the USE IT Act, streamlining CO₂ pipeline infrastructure to help catalyze a CCUS industry
 - ⁶ Investment Tax Credits for CCUS, including H.R. 5159

Roadmap Key Take-aways

- The CURC-EPRI Roadmap is a plan for delivering low- or zero-carbon emissions, fossil-fueled power plants and carbon capture technologies between 2025-2035 that can be cost-competitive with other sources of electricity under future market conditions.
- It is critical that a program for piloting and demonstrating emerging Roadmap technologies be implemented if they are to be successfully commercialized. Annual federal budgets must increase in the next several years to support the scale-up effort.
- The macro-economic benefits to the U.S. and the global environmental benefits far outweigh the federal investment recommended in the Roadmap.
- There is historical evidence of public-private partnerships developing new energy technologies that resulted in significant emissions reductions and are estimated to have resulted in a \$50 billion economic benefit through 2005.

Thank you and Questions

Shannon Angielski Executive Director Carbon Utilization Research Council (CURC) <u>www.curc.net</u> <u>sma@vnf.com</u>

