

## 2018 NETL CO<sub>2</sub> Capture Technology Project Review Meeting Pittsburgh, PA August 13 – 17, 2018

## Advanced CO<sub>2</sub> Compression with Supersonic Technology (FE0026727)

dresser-rand.com

#### **Table of Contents**





- Company Background
- Supersonic Compression
- Project Status
- Conclusions
- Contact information

#### Unrestricted

Page 2 2018-08-16

## The Dresser-Rand business

Well positioned to compete and bring value to our clients



• Enhanced client relationships & agreements

DRESSER RA

A Siemens Business

Unrestricted



#### The Dresser-Rand business at a glance



Services now part of Siemens Power Generation Services Distributed Generation and Oil & Gas

#### Unrestricted

Page 4 2018-08-16

## **History of Innovation and Technology Leadership**





Unrestricted

Page 5 2018-08-16



## Partnership with U.S. DOE

In 2008, The U.S. Department of Energy partnered with Ramgen Power Systems and the Dresser-Rand business by co-funding the adaption of flightbased supersonic compression to carbon capture and sequestration (CCS) applications requiring "100:1" total  $CO_2$  compression ratios.

The DOE identified two key objectives:

- Reduce cost
- Improve efficiency

Supersonic compressors offer the potential of lower capital costs, smaller footprints, competitive efficiencies, and waste heat energy recovery.

#### Unrestricted

Page 6 2018-08-16



## **History and Testing Milestones**

2008 Dresser-Rand and Ramgen Power Systems entered into an exclusive arrangement to further develop supersonic compression technology Construction of the world's first supersonic CO<sub>2</sub> compression test facility 2011 2013 First HP compressor test phase concluded with successful demonstration of CO<sub>2</sub> shockwave compression Second HP CO<sub>2</sub> compressor test phase concluded; achieved 9:1 2014 pressure ratio Dresser-Rand acquired assets of Ramgen Power Systems and established Seattle Technology Center in Bellevue, WA, USA Third HP CO<sub>2</sub> compressor test phase (DATUM S) concluded; achieved 2015 11.5:1 pressure ratio 2016 Award signed (DE-FE-0026727) Design of LP CO<sub>2</sub> compressor completed and manufactured. Assembly 2017 began in fall 2017 2018 First LP CO<sub>2</sub> compressor test phase (DATUM S) concluded; achieved 12.0:1 pressure ratio LP/HP 100:1 compressor train is sized at ~ 182 MWe , 90% capture 1.5 MTPA of CO<sub>2</sub> Unrestricted



## **DATUM-S Compressor Program – DOE Partnership**

- Selection notification announced Aug 13, 2015: DE-FOA-0001190
- Award signed (DE-FE-0026727) March 16, 2016
- Program kick-off meeting held April 8, 2016
- Scope included:
  - Additional HP unit testing
  - Design / build / test the high flow coefficient LP stage to complete the 100:1 total pressure ratio demonstration
  - TEA including heat integration into Case B12B

#### DOE partnership and support is critical to the success of this program.

#### Unrestricted

Page 8 2018-08-16

## **DATUM-S HP and LP Compressors**







### **DATUM-S Compressor Benefits**

## When compared to traditional subsonic compression solutions

- Smaller footprint, less equipment, less piping, fewer coolers
- Higher compression ratios
- Reduced need for gas intercooling
- Discharge temperatures exceeding 550°F (290°C)
- Waste heat recovery enables unmatched overall system efficiency



Improved availability, integration of waste heat and smaller footprint all underscore the merits of employing the DATUM-S compressor for the lowest total cost of ownership.

#### Unrestricted



#### **Waste Heat Integration**



Heat integrated back into the system 5% Waste

In a traditional system that is 85% efficient, 15% of the total energy input is lost and manifests itself mostly as low-grade heat.

In a DATUM-S compression system that is 80% efficient, 20% of the total energy input manifests itself as midgrade heat.

If 75% of the mid-grade heat can be put to work, waste energy stream is reduced to 5%.

#### Unrestricted

Page 11 2018-08-16



#### **Multiple Opportunities for Waste Heat Integration**

- Regenerate sorbent / amine Transfer heat from the compressed CO<sub>2</sub> and reduce steam diversion from the power cycle
- Sorbent drying Utilize waste heat to dry sorbent after steam regeneration
- Amine reboiler Utilize waste heat in the amine reboiler
- Boiler feed water heater Utilize waste heat to heat boiler feed water and reduce steam diversion from power cycle

#### Unrestricted

Page 12 2018-08-16



## Schedule Summary (Fiscal Years Shown)



#### Program executed in 34 months (vs 31 month initial plan)

Unrestricted

Page 13 2018-08-16

#### **Olean: Dedicated High Pressure CO<sub>2</sub> Test Facility**





In parallel with the compressor design efforts, a new 10 MW test facility was designed and built on the Olean, NY campus

Unrestricted

Page 14 2018-08-16

## 10MW HP CO<sub>2</sub> Compressor on Test Stand





- 10MW electric drive
- Closed loop CO<sub>2</sub>
- P1 = 210 psia
- P2 = 2,100 psia

## HP and LP unit is sized at ~ 182 MWe , 90% capture 1.5 MTPA of $CO_2$

#### Unrestricted

Page 15 2018-08-16



## DATUM-S LP CO<sub>2</sub> Compressor Design

- LP CO<sub>2</sub> compressor design evolved through the following process
  - System requirements
  - Conceptual design
  - Preliminary design
  - Final design
  - Production readiness and release •
- Design decisions were based on extensive analysis of system components
  - Aero : 1D meanline, 3D CFD and flow path optimization
  - Mechanical: structural, modal, thermal and • rotor dynamic

#### **Rigorous design process executed to ensure** compressor satisfies requirements

Unrestricted





21402 18345 15288

12230

9172.8 6115.4

# DATUM-S Optimization on OLCF's Titan Supercomputer





- Intelligently driven optimization is used to maximize compressor performance
- Database generation requires 17,000 simulations, 34 hrs on 128,000 cores
- Each optimization cycle requires evaluation of 600 simulations, 2 hrs on 76,800 cores
- Access to the DOE OLCF Titan supercomputer has been invaluable to optimize DATUM-S aerodynamic designs
- DATUM-S development greatly accelerated by the ORNL Supercomputers

Unrestricted



## LP CO<sub>2</sub> Assembly Tooling



#### **Tooling assemblies for bundle insertion into pressure case**

#### Unrestricted

Page 18 2018-08-16



## **10 MW LP CO<sub>2</sub> Test Configuration**

(Typical test arrangement shown for reference)



## Selected test configuration leverages existing D-R production components to reduce overall program costs

Unrestricted

Page 19 2018-08-16



#### **Test Results: Pressure Ratio**



#### **Normalized Flow**

- Compressor achieved program performance target at design operating speed
- At 104% speed compressor achieved a pressure ratio in excess of 12:1
- Use of MIGVs significantly increases the compressor turndown capability
- Good agreement between CFD pre-test prediction and experimental data is observed

Unrestricted

Page 20 2018-08-16



#### **Test Results: Efficiency**



- Compressor achieved program efficiency target at design operating speed
- At 104% speed a slight decrease in efficiency is observed
- Lessons learned from HP testing were incorporated in the design of the LP unit
- Good agreement between CFD pre-test prediction and experimental data is observed Unrestricted

Page 21 2018-08-16



### **Test Results: IGV Actuation at 104% Speed**



#### **Normalized Flow**

- Compressor IGV actuation at constant speed provided an increase in compressor operating range while achieving a total pressure ratio in excess of the program goal
- Further compressor testing for larger IGV operating angles planned as part of Dresser-Rand internal R&D efforts

Unrestricted

Page 22 2018-08-16

## Tasks 3.0 - Initial Techno-Economic Analysis

- The Dresser-Rand business performed an initial Techno-Economic Analysis (TEA) to evaluate the benefit of integrating the DATUM-S compressor for a CCS application
- NETL Baseline Case B12B from Cost and Performance Baseline for Fossil Energy Plants, Volume 1a, Revision 3 was used as a benchmark and baseline
- A thermodynamic tool was created to model the CO<sub>2</sub> compressors, heat exchangers, and changes to the plant steam cycle
- Compressor selection and staging were configured to provide the TEG dryer inlet pressure at 439 psia
- For the initial TEA, a hybrid approach that provides heat to both the amine reboiler and boiler feed water heater was selected
  - CO<sub>2</sub> is routed to amine reboiler and waste heat is recuperated to around 300 °F (149 °C)
  - Remaining heat energy is used in the feed water heater

#### Selected approach increases both plant net output power and efficiency, and reduces plant capital cost.

#### Unrestricted

Page 23 2018-08-16



## Task 3.0 - Initial Techno-Economic Analysis

- Existing Case B12B dehydration pressure level constrained DATUM-S compressor ratios, but value of heat integration was still apparent
  - Displaced steam generated 15.8 MWe additional power, for a net gain of 3 MWe electricity (turbine - compressor power) from B12B Baseline
  - Plant CAPEX reduced \$15M; COE reduced by \$1.17/MWh
  - Circulating cooling water flow reduced by 21,000 gallons per hour
- Case B12B baseline CO<sub>2</sub> compressor underestimated actual power requirement
  - Commercial selection of comparable integrally-geared compressor indicated Case B12B compressor would consume 42.7 MW, a 7 MW increase from the baseline
  - Compared to updated selection, DATUM-S enables a net gain of 10 MWe (turbine compressor) above the proposed / modified B12B baseline

#### Initial TEA showed strong benefit from DATUM-S with heat integration

#### Unrestricted

Page 24 2018-08-16



## Task 9.0 - Final Techno-Economic Analysis

|                                  | Case B12B | Case B12B<br>alternate  | DATUM S w/ heat integration |                     |                      |
|----------------------------------|-----------|-------------------------|-----------------------------|---------------------|----------------------|
|                                  | Baseline  | Lower IG<br>comp. perf. | Case DR1                    | Deltato<br>baseline | Deltato<br>alternate |
| Gross Power, MWe                 | 641.5     | 641.5                   | 656.3                       | 14.8                | 14.8                 |
| Aux Load, MWe                    | 91.3      | 99.7                    | 104.7                       | 13.4                | 5.0                  |
| Net Power, MWe                   | 550.2     | 541.8                   | 551.6                       | 1.4                 | 9.8                  |
| HHV Net Plant Eff., %            | 32.5%     | 32.0%                   | 32.6%                       | 0.1%                | 0.6%                 |
| HHV Net Plant Heat Rate, Btu/kWh | 10,508    | 10,672                  | 10,482                      | -26                 | -190                 |
| COE w/o T&S, \$/MWh              | 133.17    | 135.40                  | 132.13                      | -1.04               | -3.27                |
| ΔĊOE/ĊOE <sub>comp</sub> , %     | -         | _                       | _                           | -10%                | -27%                 |

## Significant CAPEX and COE reduction achieved with DATUM-S and heat integration

#### Unrestricted

Page 25 2018-08-16



## Task 9.0 - Final Techno-Economic Analysis

|                                  | Case B12B                           | DATUM S w/ heat |                                 | DATUMS w/ improved heat |                                 |
|----------------------------------|-------------------------------------|-----------------|---------------------------------|-------------------------|---------------------------------|
|                                  | alternate<br>LowerIG<br>comp. perf. | Case DR1        | ration<br>Delta to<br>alternate | Case DR2                | ration<br>Delta to<br>alternate |
| Gross Power, MWe                 | 641.5                               | 656.3           | 14.8                            | 657.0                   | 15.5                            |
| Aux Load, MWe                    | 99.7                                | 104.7           | 5.0                             | 104.3                   | 4.6                             |
| Net Power, MWe                   | 541.8                               | 551.6           | 9.8                             | 552.7                   | 10.9                            |
| HHV Net Plant Eff., %            | 32.0%                               | 32.6%           | 0.6%                            | 32.6%                   | 0.6%                            |
| HHV Net Plant Heat Rate, Btu/kWh | 10,672                              | 10,482          | -190                            | 10,460                  | -212                            |
| COE w/o T&S, \$/MWh              | 135.40                              | 132.13          | -3.27                           | 131.95                  | -3.45                           |
| ΔCOE/COE <sub>comp</sub> , %     | _                                   | _               | -27%                            | _                       | -28%                            |

## Sensitivity study (closer HX approach, better utilization of heat) shows even larger benefit

#### Unrestricted

Page 26 2018-08-16



## Task 9.0 - Final Techno-Economic Analysis

- For the final Techno-Economic Analysis, the plant architecture remained the same as for the initial TEA, with the heat of compression displacing steam used in the amine reboiler and boiler feedwater heaters.
- Case B12B dehydration pressure level was not altered (439 PSIA). This constrained DATUM-S compressor ratios as in the initial TEA.
  - Co-optimization of the TEG dehydration pressure and DATUM-S pressures represents an opportunity to further improve TEA results.
- Thermodynamic model was updated for the final TEA:
  - Excel model was replaced with one in Thermoflex
- Heat integration from the DATUM-S results in significant improvement
  - Displaced steam generated 14.8 MWe additional power, for a net gain of 1.4 MWe electricity from B12B Baseline
  - Plant CAPEX reduced \$16M; COE reduced by \$1.04/MWh
  - Circulating cooling water flow reduced by 21,500 gallons per hour
- Case B12B baseline CO<sub>2</sub> compressor underestimated actual power requirement
  - Commercial selection of comparable integrally-geared compressor indicated Case B12B compressor would consume 44.0 MW, an 8.3 MW increase from the baseline
  - Compared to updated selection, DATUM-S enables a net gain of almost 10 MWe above the proposed/modified B12B baseline

#### Final TEA shows strong benefit from DATUM-S with heat integration

Unrestricted



## Summary

- Completed HP and LP compressor testing
  - 11.5:1 pressure ratio in HP
  - 12.0:1 pressure ratio in LP
  - Discharge temperature is approximately ~550F
- Completed final TEA for integration of waste heat shows benefit for Carbon Capture and Sequestration applications
  - 28% reduction in COE for the cost of compression duty
  - 21,000 gallon reduction in cooling water
- Program was executed in 34 months compared to 31 month original schedule
- Program was executed within 1.6% of total initial budget, \$8.13M vs \$8.00M

#### Dresser-Rand business continues to develop and commercialize supersonic compression technology to reduce cost and improve efficiency of compression for CCS applications.

Unrestricted



## Acknowledgements

The Dresser-Rand business gratefully acknowledges DOE/NETL support for the continued development of supersonic compression technology under contracts DE-FE-0000493 and DE-FE00-26727. We would also like to acknowledge Mr. Robin Ames and Ms. Lynn Brickett for the support provided during the execution of this project, and Mr. Travis Shultz for providing information required for the techno-economic analysis.

The Dresser-Rand business also acknowledges the continued support by DOE Oak Ridge Leadership Computing Facility for providing, as part of the ALCC program, the Titan supercomputer time used for the aerodynamic optimization of the DATUM-S HP and LP compressors.

#### Unrestricted

Page 29 2018-08-16

#### Contact



DRESSER RAND

A Siemens Business

Mark J Kuzdzal Director, Business Development Strategic Business Development and Commercialization Unit 500 Paul Clark Drive, Olean, New York, 14760, USA Tel: +1 (716) 375-3573 Mobile: +1 (716) 378-5483 Mark.Kuzdzal@siemens.com

Ravi Srinivasan Aero/Thermodynamic Engineer R&D Seattle Technology Center 11808 Northup Way Suite W-190 Bellevue, WA 98005 Phone: +1 (425) 828-4919 ext 247 Fax: +1 (425) 828-7756 ravichandra.srinivasan@siemens.com

dresser-rand.com

#### Unrestricted

Page 30 2018-08-16