

Dilute Source CO₂ Capture: Management of Atmospheric Coal-Produced Legacy Emissions

2018 NETL CO₂ Capture Technology Project Review Meeting Pittsburgh, PA, 08/15/2018 FE0026861

Management, Partners and Shareholders

Investors

CE has received and been awarded ~\$30 million in funding from private investors and government partners.

Current largest investors are Bill Gates & Murray Edwards.

Key Management

Steve Oldham – CEO, B. Sc.

- 20+ years executive experience in commercializing major technology projects
- Executive positions in general management, business and strategy at MDA, one of Canada's largest technology companies

Susan Koch – CFO, CPA, CA

- Energy technology development finance veteran
- Previously CFO at General Fusion, Vaperma, and Cellex Power, where she helped raise \$130M from global investors

David St. Angelo – CTO, M.Sc.

- 25 years in technology leadership spanning photovoltaics, batteries, carbon capture and biofuels
- Previous positions include SVP at Joule Unlimited, VP Skyonic Corporation and VP Valence Technology

David Keith – Founder, Acting Chief Scientist

- 25 years working at the interface of climate science, technology, and public policy Professor at Harvard University
- Listed as one of TIME magazine's Heroes of the Environment 2009

Government Partners

stern Economic ersification Canada Diversification de l'économie de l'Ouest Canada

Project Overview

Funding, Participants, and Performance Dates

Total Project Budget: \$1.875 M USD Federal Cost Share: 80% (\$1.5 M USD) Non-Federal Cost Share: 20% (\$375 k USD)

Project Participants: Carbon Engineering Ltd.

Project Performance Periods:

BP1: 2016-09-19 to 2017-09-18 BP2: 2017-09-19 to 2019-03-31

Project Overview

Overall Project Objectives

Cultivate a dilute source CO_2 DAC technology that can be applied to re-capture legacy coal-based emissions directly from the atmosphere.

Develop a better understanding of DAC performance through lab and pilot study, and codifying these results in TEA format.

Technology Background

DAC: Direct Air Capture of CO₂

Strategic and Transformative Technology:

- Negative Emission Technology
- Can locate anywhere
- Manages emissions from any source
- Highly scaleable

Complimentary to CCS:

- Higher thermodynamic barrier
- Larger air volume to be processed

Technology Background

CE's DAC Process

Technology Background

Pilot Plant in Squamish, British Columbia

- Broke ground in 2015
- 1 t/day CO₂ capture capacity
- ~10,000 total hours operated
- Patented technology
- End-to-end demonstration

Project Scope

Work Plan and Milestones

Task 1	Task 2	Task 3	Task 4	Task 5
Project Management and Planning	Pilot Operation, Sensitivity Analysis, and Component Optimization	Testing, Performance Analysis, and Technology Optimization	Engineering Input for Scale-up and Technology Cost Projections	Technology Cost Projections and Technical Assessment of Applicability to Coal Stream
 DMP Completed Year 1 Annual Report and Updated Project Management Plan Project Final Report 	 Synthesis Data Showing >3000 hours Pilot Operation Research results from lab and technology integration ready for input to prototype development 	 Identification of Feasible Alternative Technologies and Path Forward Pilot Operations – Completion of Long-term Effects Research 	 Updated Process Flow Diagram and Vendor Request for Quote 	 Major Equipment Specification and Component Cost Model Engineering Assessment, Full Plant Cost Model

Project Scope

Progress and Current Status

Data collected over the last 2 years

Performance of key pieces of equipment

Learnings of overall system and subsystems

Informs TEA and internal commercialization efforts

Air Contactor Performance Data – Mass Transfer, Pressure Drop

Time series pilot contactor operation data showing patented fluid flow cycles. Average air flow velocity of 1.17 m/s at 18 C ambient temperature.

Air Contactor Performance Data – Drift

Particle size distribution measured at contactor outflow showing contrast between drift with liquid flow on and off.

Pellet Reactor

Optimization efforts led to increased retention in pilot pellet reactor system of at least 20% above baseline

Calciner

Processed 15,000 kg of $CaCO_3$ in DAC pilot in a closed loop

Techno-Economic Analysis

Carbon Engineering

Baseline: Dilute Source Atmospheric CO₂ – DAC Plant

Case 1: Dilute Source CCS exhaust – Polishing Unit

Source: NETL

14

Future Work

Carbon

AIR TO FUELS™ Technology

Enables progressive de-carbonization of transport by gradual fuel switching

Future Work

First Commercial AIR TO FUELS[™] Facility

Acknowledgements

Acknowledgement:

This material is based upon work supported by the Department of Energy under Award Number DE-FE0026861.

Thank you:

Bruce Lani Chuck Tomasiak

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Ricky Souza Business Analyst rsouza@carbonengineering.com

