Storage of CO₂ in Multi-phase Systems Containing Brine and Hydrocarbons

Project Number: LANL FE-890-18-FY18

Rajesh Pawar Bailian Chen Los Alamos National Laboratory

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 13-16, 2018

Presentation Outline

- Project Objective
- Approach & Technical Status
- Project Summary
- Synergy Opportunities

Project Objective

- Develop improved quantitative relationships for predicting storage and trapping efficiencies in environments where both a brine and hydrocarbon fluid are present (primarily, unconventional reservoirs such as ROZs).
 - Identify key characteristics
 - Develop empirical models for quantifying: CO₂ storage capacity, oil recovery potential, CO₂ fate
 - Assess CO₂ storage capacity and associated oil recovery for different ROZ fields
 - Focused on greenfield ROZs with potential applicability to other unconventional settings such as brownfield ROZs.

CO₂ Storage in Residual Oil Zones

- Residual Oil Zones (ROZs) are defined as those zones where oil is swept over geologic time period (natural flush) and exists at residual saturation
 - Brownfield: ROZ underlies a Main Pay Zone (MPZ)
 - ➢ Greenfield: no Main Pay Zone above ROZ
- ROZs are being increasingly exploited using CO₂-EOR:
 - Multiple on-going commercial field operations in Permian Basin
- Greenfield ROZs can be potentially explored for CO₂ storage with a side benefit of incremental oil recovery

Residual Oil Zone Fairway Mapping with Superimposed Major Permian and Pennsylvanian Oilfields and Showing the First Pure ROZ Greenfield ROZ CO₂Project

Green- and Brownfield Residual Oil Zones Illustrating Upper and Lower Transition Zones GREENFIELD BROWNFIELD (No Overlying Oitfield) (With an Overlying Olifield) All of the Paleo Conventionally Productive Oil **Trap Naturally Waterflooded** CONTACT DASE OF So (BOSO) BASE OF S 20 40 60 80 20 40 60 80 Water Saturation (Sw) (%) Water Saturation (Sw) (%) 100 100 Oil Saturation (So) (%) Oil Saturation (So) (%

Approach & Technical Status

- <u>Approach:</u>
 - >Utilize numerical simulations using Eclipse compositional simulator
 - Develop empirical models for CO₂ storage capacity, oil recovery, CO₂ fate using results of numerical simulations
 - > Apply empirical models to fields with ROZ

• FY17 Outcomes:

- > Developed numerical models based on field data from Permian Basin
- > Performed initial characterization of CO₂ storage in ROZs

FY18: Numerical simulations

- Reservoir model based on data for Goldsmith-Landreth San Andres Unit (GLSAU) in the Permian Basin: ARI study, History matched
- Monte-Carlo simulations: 15 years operation (10 years injection, 5 years post-injection)
- Multiple uncertain parameters
- ▶ Multiple injection modes: Continuous CO₂ and WAG
- Multiple well patterns: five-spots (sparse, dense), line drives
- > Two ML algorithms for empirical model development: SVR & MARS

Uncertain parameters	Lower bound	Upper bound	Units	Correlations
Thickness (h)	50	300	ft	$\phi = 0.082 \times K^{0.216}$ $P = 14.7 + 0.433 \times D$ $T = 60 + 0.015 \times D$
Depth (D)	4000	6000	ft	
Permeability (K)	0.01	200	mD	
Sorw	0.2	0.4		
Sorg	0.1	0.2		
CO ₂ injection rate	5	20	MM scf/day	
Producer BHP	100	1500	psi	

6

Key characteristics affecting CO₂ storage & oil recovery

Empirical model application to real fields

- Previous studies on Permian Basin fields (simulation based)
 - ➢ Focused on oil recovery
 - ≻ Little information on field-specific CO₂ storage capacity
- Limited data in public literature
 - Values of some critical parameters not reported: CO₂ injection rates, permeability
- ML-based empirical models applied to 5 Permian basin fields (reported in ARI study)

Empirical model application to Permian Basin fields

Long term CO₂ fate

- Significant fraction of retained CO₂ exists as dissolved in oilphase
- Comparatively, very little fraction of injected CO₂ dissolves in water

10

Comparing CO₂ storage in ROZ, saline aquifers and oil reservoirs

Varied initial oil saturation: 0.7, 0.6, 0.5, 0.4 (=Sor, ROZ), 0 (saline aquifer)

Well pattern: Single five-spot

Injection rate: 233 tons/day/well, 933 tons/day/well

Comparing CO₂ storage in ROZ, saline aquifers and oil reservoirs

Solid line - Sio=0.7, 0.6, 0.5 or 0.4 Dashed line - Sio = 0

Project Summary

- <u>Key Findings:</u>
 - Numerical simulations have been used to identify key characteristics as well as develop empirical models for quantifying preliminary CO₂ storage capacity, oil recovery potential in ROZs
 - ✤ ROZs potentially have significant CO₂ storage capacity
 - Field-specific studies needed to improve predictions & predictive capabilities
 - Modeling results show that CO₂ primarily resides as dissolved in oil-phase or free-phase. Only a little fraction of CO₂ is retained in in-situ water phase
 - Preliminary modeling studies have been performed to compare CO₂ storage between saline reservoirs and reservoir with hydrocarbons at or above residual oil saturations

Project Summary

• <u>Key Findings (contd.)</u>:

- In spite of increased commercial CO₂-EOR operations in ROZs, critical understanding needs to be developed for CO₂ storage & oil production mechanisms as well as long-term CO₂ fate and risks
 - ✤ Lack of appropriate data
 - ✤ Large uncertainty

• <u>Next Steps:</u>

- Contribute to NETL initiative on developing ROZ CO₂ storage capacity estimates: Compare modeling results with other efforts
- > Apply empirical models to ROZs from other basins in US
- Continue work on comparison between CO₂ storage in saline aquifers and reservoirs with hydrocarbons
- Laboratory experimental characterization of parameters/processes in ROZ

Synergy Opportunities

- NETL Carbon Storage Atlas project: share empirical models for estimating storage capacity
- Other modeling efforts on ROZ storage potential: compare modeling approaches, share results, share lessons learned
- Collaborations and knowledge-sharing with NETL, Illinois Geologic Survey, UT-BEG, UND-EERC

Appendix

These slides will not be discussed during the presentation, but are mandatory.

Benefit to the Program

- Program goals being addressed:
 - Support industry's ability to predict CO_2 storage capacity in geologic formations with $\pm 30\%$.
- Project benefit:
 - This project is focused on developing the science basis to characterize CO_2 storage potential in Residual Oil Zones (ROZs). The objective is to help develop a methodology to estimate CO_2 storage capacity, potential oil recovery and long-term fate of CO_2 that is applicable to a wide range of geologic and operational conditions. This will help CO_2 storage program goal of supporting industry's ability to predict CO_2 storage capacity.

Project Overview Goals and Objectives

- Develop improved quantitative relationships for predicting storage and trapping efficiencies in environments where both a brine and hydrocarbon fluid are present (primarily, unconventional reservoirs such as ROZs).
 - Identify key characteristics
 - Develop empirical models for quantifying: CO₂ storage capacity, oil recovery potential, CO₂ fate
 - Assess CO₂ storage capacity and associated oil recovery for different ROZ fields

Organization Chart

- Rajesh Pawar, PI
- Bailian Chen, Post-doc
- George Guthrie, LANL Program Manager

Gantt Chart

Storage and Trapping of CO₂ in Multiphase Systems Containing both Brine and Hydrocarbon

**FY of funds (Note: funds normally become available mid- to late-FY)

Bibliography

- Chen, B. and Pawar, R. J., 2018, Capacity Assessment of CO₂ Storage and Enhanced Oil Recovery in Residual Oil Zones. SPE-191604-MS, 2018 SPE Annual Technical Conference and Exhibition, Dallas, TX, 24-26 Septmember.
- Chen, B. and Pawar, R. J., 2018, Capacity Assessment of CO₂ Storage and Enhanced Oil Recovery in Residual Oil Zones. 14th International Conference on Greenhouse Gas Control Technologies, Melbourne, Australia.