

Process for CO₂ Capture from Low Concentration Streams

DOE Funding Award DE-SC-0015114

Ravi Jain InnoSepra, LLC Middlesex, NJ www.innosepra.com

Executive Summary

- Cost effective CO₂ capture from low concentration sources
 - Residue stream after 90% capture, 1-1.5% CO₂ or other low concentration source such as the NGCC flue gas
 - Physical sorbents in structured forms with very high CO₂ capacities at low CO₂ concentrations
 - CO₂ enrichment by a factor of 5-10
 - Recycle to a new or an existing post-combustion capture process
- Significantly lower cost compared to other options
 - ~\$46/tonne enrichment cost for a dry residue stream
 - ~\$72/tonne enrichment cost for a saturated residue stream
 - For an existing post-combustion capture system 99% capture is possible with <10% increase in the capture cost

- A two-stage process with structured sorbents to minimize pressure drop for very high flows associated with low concentration sources
- Moisture removal in the first stage for feeds containing moisture
- The CO₂ adsorption in the second stage
- A CO₂ enriched stream (10-15% CO₂) produced during regeneration, recycled as feed to a new or an existing postcombustion CO₂ capture system

Key Features

- Structured sorbents in a rotating wheel or fixed bed configuration for *optional* moisture removal and CO₂ adsorption
- CO₂ adsorption on sorbents with very high capacities at low CO₂ concentrations, direct thermal regeneration to produce a CO₂-enriched stream
- Recycle of CO₂-enriched stream to a post-combustion capture system utilizing sorbents, solvents, or membranes
- >99% CO₂ capture with a <10% increase in the capture cost (over the cost of 90% capture)

Why Structured Sorbents

Advantages

- Very high surface area to volume ratio (>10x10⁶ m²/m³) for sorbents, much higher than amines (~1,000 m²/m³) and membranes (250-5,000 m²/m³)
- 40-55% lower heat requirement for regeneration compared to amines, 75-80% lower power loss compared to amines due to steam extraction (much lower steam extraction temperature)
- Very low pressure drops (1/5th to 1/10th of particulate sorbents), not subject to fluidization constraints, commercially available

Limitations

- Continuous processes with short residence times are difficult
- Typical cycle times are 1-2 mins (O₂ VSA, Inventys/ Questair) to 4-10 mins (InnoSepra)
- Some of the surface area to volume advantage lost due to the use of a cyclic process

Prior Work

- DOE SBIR (Phase I and II) for post-combustion CO₂ capture using structured sorbents
 - Moisture removal capacities of up to 30-wt% in breakthrough tests at 25-35°C, moisture removal to below 10-ppm in cyclic tests
 - CO₂ removal capacities of up to 10-wt% at 25°C and up to 6-wt% at 35°C, lower than particulate sorbents
 - Both CO₂ recovery and purities lower than particulate sorbents

Project Goals

- Fabricate adsorption test modules for CO₂ and moisture adsorption, modify the process units
- Semi-bench scale testing for moisture removal
- Lab and semi-bench scale testing for CO₂ adsorption
- Engineering design for a full-sized plant
- Techno-economic analysis for a 1,000,000 scfm feed

Photograph of Fixed Bed Test Unit

Testing of Structured Sorbents for Moisture Removal

Progress

- Testing carried out in both fixed bed and rotating bed units
- Better performance and more process flexibility with fixed bed units

	-				
Feed	Feed Air	Regen Air	Feed Moisture	Process Outlet	Moisture
Temperature	Flow	Flow		Moisture	Removal
(degC)	(slpm)	(slpm)	(ppm)	(ppm)	%
25.1	160	145	32,500	1,250	96.2
25.4	160	145	33,200	1,890	94.3
26.1	240	215	36,913	2,388	93.5
25.3	240	215	33,010	2,346	92.9
28.2	158	144	39,217	1,310	96.7
27.5	158	144	37,592	1,350	96.4
27.6	239	214	37,630	1,410	96.3
27.7	239	214	38,050	1,390	96.3
34.0	161	143	56,220	1,620	97.1
34.1	160	144	57,020	1,810	96.8
32.3	242	212	50,118	1,725	96.6
32.0	240	213	49,235	1,460	97.0

Moisture Removal Tests with the Rotating Bed

Moisture Removal Tests with the Fixed Bed

Feed	Feed Air	Regen Air	Feed Moisture	Process Outlet	Moisture	
Temperature	Flow	Flow		Moisture	Removal	
(degC)	(slpm)	(slpm)	(ppm)	(ppm)	%	
25.0	155	140	32,010	400	98.8	
22.7	158	141	27,910	425	98.5	
24.9	240	215	32,055	450	98.6	
24.1	240	215	30,500	505	98.3	
27.1	163	147	36,600	492	98.7	
27.5	161	145	37,300	601	98.4	
27.0	238	213	36,010	545	98.5	
27.7	239	214	38,100	560	98.5	
32.1	158	142	48,520	490	99.0	
34.1	160	144	57,200	553	99.0	
32.3	245	215	49,800	510	99.0	
32.0	241	214	49,300	525	98.9	

Testing of Structured Sorbents for CO₂ Enrichment

Progress

Sorption isotherms at low CO₂ concentrations

- Breakthrough and cyclic tests with preferred sorbents at 25-35°C (0.5-2.0% CO₂ in the feed)
 - Breakthrough capacities of 5.0-8.5-wt% at 25°C, and 4.0-7.0-wt% at 35°C
 - Cyclic capacities >90% of breakthrough capacities
 - CO₂ enrichment by a factor of 5-10 depending on feed CO₂ concentration, regeneration temperature, and cycle time

Techno-Economic Analyis

Progress

 Techno-economic analysis carried out for both the wet feed (amines) and dry feed (InnoSepra's sorbent-based process) using the experimental results

CO₂ Enrichment Cost for a Wet Residue Stream (250,000 scfm Flow)

Compression System, \$MM	5.04	
Adsorption System, \$MM	7.05	
Total Capital, \$MM	12.1	
Electrical Power, MW	2.5	
Power Equivalent of Steam, MW	1.0	
Total Power, MW	3.5	
Total Annual Cost, \$MM	3.77	
CO ₂ Enrichment Cost, \$/tonne	71.8	

CO₂ Enrichment Cost for a Dry Residue Stream (250,000 scfm Flow)

Compression System, \$MM	2.25
Adsorption System, \$MM	4.55
Total Capital, \$MM	6.80
Electrical Power, MW	0.9
Power Equivalent of Steam, MW	1.0
Total Power, MW	1.9
Total Annual Cost, \$MM	2.42
CO ₂ Enrichment Cost, \$/tonne	46.0