InnoSepra

Transformational Sorbent-Based Processes for a Substantial Reduction in the Cost of CO₂ Capture

August 2019

Ravi Jain

ravi.jain@innosepra.com

www.innosepra.com 908-450-9840 (o) 908-672-7395 (c)

Executive Summary

- InnoSepra's process utilizes physical sorbents with low heat of adsorption (~0.8 GJ/MT)
 - Can produce CO₂ at high purity (>99%) and recovery (>90%) for coal and natural gas-based power plants, and industrial sources
 - The estimated absolute energy required, excluding compression, is 1.5 GJ/MT, about 57% lower than MEA for coal-based plants
 - Heat needed at about 100°C compared to >140°C for amines
 - Lower absolute amount of heat needed and lower steam extraction temperature leads to ~78% lower power loss due to steam extraction
 - Potential for 50% reduction in the capital, and 78% reduction in parasitic power compared to MEA leading to >50% reduction in capture cost for EOR grade CO₂ (<1 ppm H₂O, <1 ppm SO_X, <10 ppm O₂)

The First Generation InnoSepra Process

- Demonstrated at 100-scfm scale at a coal-fired power plant
 - 8-10.5 wt% net CO₂ capacity in the field (much higher than steam regenerable sorbents)
 - >94% CO₂ recovery, 98.5- 99.5% CO₂ purity
 - The total heat requirement is 2.1 GJ/MT of CO₂
 - The power loss due to steam extraction is about 50% of amines due to lower steam extraction temperature
 - 18% reduction in total plant output due to steam extraction and CO₂ compression compared to 25-28% reduction for amines
 - About \$38/MT capture cost, 48% lower than MEA

Adsorption Skid at NRG's Indian River Plant

The Second Generation InnoSepra Process

- A novel regeneration method and sorbent combination developed for the second generation process allows
 - Reduction in non-heat of adsorption part of parasitic power from 1.3 GJ/MT to 0.7 GJ/MT for a total parasitic power of 1.5 GJ/MT
 - The power loss due to steam extraction is 78% lower than MEA
 - <16% loss in total power output due to steam extraction and CO₂ compression
 - A projected capture cost of \$32/MT and a pathway for a capture cost below \$30/MT with no increase in LCOE

The DOE Project

Major project tasks

- Material and process development at lab scale through lab scale testing, isotherm measurements and Monte Carlo simulation
- Adsorption process modeling and process Intensification
- Testing at TCM at >100-scfm scale
- Detailed engineering design including modular design to maximize shop fabrication, a techno-economic analysis to show the benefits

Project Partners

 Technology Center Mongstad (TCM), Arizona State, Main Line Engineering, Plant Process Equipment

Performance Period and Project Budget

- Two budget periods totaling 36 months
- Total project budget is \$4.02 M including cost share

Summary

- The InnoSepra technology has the potential for a significant reduction in CO₂ capture cost for a variety of sources
- It is possible to obtain very high recovery (>90%), and high purity (>99%) CO₂ with physical sorbents while meeting the EOR/sequestration product specifications.
 - Potential to reduce the parasitic power required by about 78%, and the capital required by about 50% leading to >50% reduction in the CO₂ capture cost for the coal-based power plant flue gas
 - A potential capture cost below \$30/MT with no increase in LCOE