

Large Pilot Testing of the MTR Membrane Post-Combustion CO₂ Capture Process

(DE-FE0031587; FOA 1788)

Richard W. Baker, Tim Merkel, Brice C. Freeman Membrane Technology and Research, Inc.

NETL Project Manager: Sai Gollakota

Pittsburgh, PA August 29, 2019

Project Overview

- Award Name: Large Pilot Testing of the MTR Membrane Post-Combustion CO₂ Capture Process (DE-FE0031587; FOA 1788)
- Project Period (Phase I): 4/1/18 to 8/31/19
- **Funding:** \$957k DOE + \$239k cost share = \$1.196M total
- DOE-NETL Project Manager: Sai Gallokota
- Project Team: MTR (prime), WITC, Basin Electric (Host), Sargent & Lundy, Trimeric, Worley Parsons
- Overall Goal: Design, build, and operate a 200 TPD large pilot membrane capture system.

Phase I	Phase II	Phase III
FeasibilitySite selectionCreate team(Done)	FEED studyPermitting(Underway)	Build, operate, and demonstrate process performance and costs

The Project Team

DOE Office of Fossil Energy

Program Management

Membrane Technology & Research, Inc.

Overall Project Management
Co-Principal Investigators:
Richard Baker, Project Coordination
Brice Freeman, DOE and Team Coordination

The Project Team - Phase II				
WITC / Bain Electric	MTR	Trimeric	Sargent & Lundy	
Host Site	Technology Supplier	Engineer	EPCM	
			Kevin Lauzze	
Will Morris, WITC	Thomas Hofmann	Ray McKaskle	Danielle Koren	
- All test site issues	Erik Westling		FEED and Permitting Lead:	
			- Construction planning	
John Jacobs, Basin	Engineering Design:	Engineering Design:	- Scheduling	
- All power plant issues	- Membrane system	- Direct Contact Cooler	- Utilities & power	
	- Permeate compression	- Carbon Purification Unit	- Process control	
	- Process simulation package		- Layout	
	- Revised TEA		- Permitting	

Basin Electric's Dry Fork Station

- Modern power plant
- High CO₂ concentration flue gas
- Test center built can support 20 MW_e projects
- Power, utilities and flue gas connections in place

The MTR CO₂ Capture Design

Power Consumption as a Function of CO₂ Capture Rate

Power consumption is expected to be between 310 and 320 kW $_{\rm e}$ /tonne CO $_{\rm 2}$ captured

Using a Contactor Helps

Why Consider Membranes?

- Simple, passive operation
- No hazardous chemical handling, emissions, or disposal issues
- Compact
- Water use lower than other technologies
- No steam use → no modifications to existing boiler/turbines
- Near instantaneous response; high turndown possible
- Efficient at partial capture (~60%)

The MTR 20 TPD Small Pilot at NCCC Showing Membrane Vessels on Top Floor

We Developed Large Area Plate-and-Frame Modules and Tested them at NCCC 2014-2015

380 Pittsburg Aug 2019

Our New Base Unit is a Container-Sized Skid Fitted with 48 Plate-and-Frame Modules

Layout Drawing of the 200 TPD Large Pilot Membrane Skid

Process Flow Diagram of the 200 tonne/day Large Pilot Unit

At 60% CO₂ capture, a coal power plant emits less CO₂ than an equivalent-sized gas turbine without capture

A Birds-Eye View of the 200 TPD System

