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Project Overview
Project Objectives
◦ Develop an enabling technology for simultaneous 

recovery of latent heat and removal of SOx and NOx from 
flue gas during pressurized oxy-coal combustion.

Funding
◦ Total award: $1,291,964 � DOE share: $996,652

Cost share: $295,312

Project Performance Dates
◦ 09/01/2015 - 08/31/2018  (extended)

Project Participants
◦ Washington University in St. Louis
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Technology
BACKGROUND
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15 bar, 550 MWe power plant with > 90% CO2 capture
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• Surface-moisture free feeding.
• Exhaust [O2] ≈ 3 % (d.b.) = 0.26 bar (partial pressure), compared to 0.03 bar for atm. pressure

SPOC Process Flow Diagram



Main Contributors to efficiency 
gain:

◦ Heat from flue gas moisture 
condensation (~ 1.5 %-pts.)

◦ Lower exergy loss due to reduced 
recycle & surface-dry feeding (up 
to 3.5 %-pts.)

◦ Aux. load reduction due to staging 
& pressurization

◦ Effective integration of waste heat 
from oxygen production & 
compression
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SOx and NOx Removal
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Knowledge Gaps:
There are discrepancies about the role of N2O3 and N2O4 in NOx dissolution
Aqueous phase kinetics and mechanism remain unclear
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Project Objectives
◦ Develop a predictive model for reactor design & operation.

◦ Experimentally determine critical reactions and rates.

◦ Conduct parametric study (T and pH) to optimize process.

◦ Design, build, test prototype for 100 kW pressurized DCC.

◦ Determine size of the DCC for a full-scale SPOC plant in 
order to estimate capital and operating costs.
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Project Organization
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Project Management
Richard Axelbaum

Ben Kumfer

Modeling
Lead:

Gregory Yablonsky

Oleg Temkin
Piyush Verma

Prototype 
DCC
Lead:

Ben Kumfer

David Stokie

Chemical Mechanisms 
and Kinetics

Experiment
Lead:

Young-Shin Jun

Yujia Min
David Stokie

Process 
Modeling

Lead:
Richard Axelbaum

Piyush Verma
Akshay Gopan



Technical Approach
PROJECT SCOPE
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Technical Approach
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Progress and Current 
Status

MECHANISM AND KINETICS

BENCH-SCALE EXPERIMENTS
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Objectives of Bench Scale Experiments

◦ Experimentally validate the gas to liquid chemical 
mechanism 

◦ Identify and determine the key reactions, reaction 
pathways and rates of the liquid chemistry

◦ Develop a robust kinetic model capable of accurately 
predicting the removal efficiency of a direct contact 
column
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Proposed mechanism
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NOx Reactions
Gas Phase

1. 2NO (g) + O2(g) 2NO2 (g)
2. 2NO2(g) ↔N2O4(g)
3. NO(g) + NO2(g) →N2O3(g)

Gas + Liquid Phase
4. 2 NO2 (g) + H2O (g, aq) HNO2 (aq) + HNO3 (aq)
5. N2O4(g)+ H2O (g, aq) HNO2 (aq) + HNO3 (aq)
6. N2O3(g) + 2H2O (g, aq) 2 HNO2 (aq)
7. 3 HNO2 (aq)HNO3 (aq)+ 2 NO (g, aq)+ H2O (g, aq)

SOx Reactions
8. SO2 (g) + H2O (g, aq) ↔ HSO3

- (aq) + H+ (aq)

SOx + NOx Reactions
9. HNO2 (aq) + HSO3

- (aq) + H+ (aq)→ H2SO4 (aq)+ ½ N2O (g) + ½ H2O (aq)
10. 2 HNO2 (aq) + HSO3

- (aq) + H+ (aq) → 2NO (g) + H2SO4 (aq) + H2O (aq)
11. HNO2(aq) + 2HSO3

-(aq) → HON(SO3)2
2-(aq) + H2O(l)



Experiment to Obtain Kinetic Data
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The reactor design is optimized for conducting experiments under 
high pressure and temperature and highly acidic conditions 

In situ pH measurements under high pressure/temperature conditions

• Pressure of 15 bar, 900 ppm NOx, NOx/SOx ratio of 2



Reduced mechanism
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NOx Reactions
Gas Phase

1. 2NO (g) + O2(g) 2NO2 (g)
2. 2NO2(g) ↔N2O4(g) Equilibrium
3. NO(g) + NO2(g) →N2O3(g)

Gas + Liquid Phase
4. 2 NO2 (g) + H2O (g, aq) HNO2 (aq) + HNO3 (aq)
5. N2O4(g)+ H2O (g, aq) HNO2 (aq) + HNO3 (aq)
6. N2O3(g) + 2H2O (g, aq) 2 HNO2 (aq)
7. 3 HNO2 (aq)HNO3 (aq)+ 2 NO (g, aq)+ H2O (g, aq)

SOx Reactions
8. SO2 (g) + H2O (g, aq) HSO3

- (aq) + H+ (aq)

SOx + NOx Reactions
9. HNO2 (aq) + HSO3

- (aq) + H+ (aq)→ H2SO4 (aq)+ ½ N2O (g) + ½ H2O (aq)
10. 2 HNO2 (aq) + HSO3

- (aq) + H+ (aq) → 2NO (g) + H2SO4 (aq) + H2O (aq)
11. HNO2(aq) + 2HSO3

-(aq) → HON(SO3)2
2-(aq) + H2O(l)



SOx and NOx Removal
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Knowledge Gaps:
There are discrepancies about the role of N2O3 and N2O4 in NOx dissolution
Aqueous phase kinetics and mechanism remain unclear



Liquid Chemistry
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When compared to previous models, the overall trends are the 
same however our model fits better to the experimental data
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The effect of temperature and pH
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-
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Decrease in pH results in an 
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change in reaction rates or 
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At 72 C additional reactions 
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PROTOTYPE DIRECT CONTACT COOLER (DCC)
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Progress and Current 
Status



DCC Prototype
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Features:

•100 kWth SPOC facility integration

•Simulated flue gas capability

•Liquid recycle and pH control

Parameters:

•Vapor residence time:  < 120 
seconds

•pH range: 2 – 7

•L/G ratio:  3 – 80 (L/m3)

•1 -30 bar maximum operating 
pressure

•Flue Gas Temperatures: < 350 °C



DCC Test Facility

21

CO2 CO2 + NO + SO2

NO and SO2

Cylinders

Gas 
Heater

O2

CO2 + O2 + 
NO + SO2

Exhaust Gas

Heat 
Exchanger

DCC 
Column

Mains Water

Effluent Water to 
Neutralization

Water 
Recycle

Scrubbing Water



The effect of O2 concentration on NOx conversion

22

Conditions:

Pressure : 13.5 bar (abs)

Temperature : 24 °C

L:G Ratio : 1 kg:kg

Residence Time : 120 seconds

Inlet SO2 ppm : 421 ppm

Inlet NOx ppm : 550 ppm

L:G Ratio based on water flow for heat transfer requirements
O2 concentration range similar to oxyfuel outlet conditions
SO2 and NOx ppm similar to oxyfuel outlet conditions 
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FULL-SCALE DCC MODELING USING 

IMPROVED MODEL OF CHEMISTRY
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Progress and Current 
Status



DCC Full Scale Modeling.
Objectives:

1. Capturing latent heat from the flue gas
2. Removal of SOx
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Inlet Flue Gas
193.31 kg/s
200 °C

Outlet Flue Gas
152.84 kg/s
55 °C

Inlet Cooling water
223 kg/s
42 °C

Water Outlet
263.42 kg/s
161 °C

Process Flow Diagram of system



Modeling Parameters
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Assumption for Modelling:
 Packed Column is used with Raschig metal rings.  
 Cooling water flow rate was determined based on the flue gas outlet 

temperature
 Height is calculated based on an outlet SOx concentration of less than 15 ppm.

Option A : Single DCC Option B: Two DCCs in parallel

Diameter is sized based on total gas flow 
rate with an approach to flooding 
velocity of 80%.

Diameter was fixed at 4 m because of 
ease of transportation. The total gas flow 
rate is split in two parts.

Approach to flooding velocity is 80% Approach to flooding velocity is 71%

Two configurations were studied for the process:



DCC Full-scale Modeling
Inlet Flue gas Composition

26

O2 H2O NO NO2 SO2 SO3

Mole 
Fraction

3% 39% 700
(ppm)

250
(ppm)

700
(ppm)

250
(ppm)

H2O concentration SOx Removal NOx Removal

Single Column < 1.5% v/v > 99% 75.8%

Two Columns < 1.5% v/v > 99% 71.8%

Diameter Length Residence time

Single Column 5 m 60 m 80.4 s

Two Columns 4 m 45 m 77.1 s

Outlet Gas Results

Column Design Specification



Future Work

27

◦ Operate lab-scale DCC at elevated flue gas temperature, up 
to 200 ˚C.  Validate model under these conditions.

◦ Optimize the design of a full-scale DCC and feed this 
information into the techno-economic model being 
developed by EPRI, Doosan Babcock and Air Liquide (next 
talk).
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