

2018 UNIVERSITY TURBINE SYSTEMS RESEARCH PROJECT REVIEW MEETING

Embry-Riddle Aeronautical University

Daytona Beach, Florida October 31, 2018

Development of Modular, Low-Cost, High-Temperature Recuperators for the sCO₂ Power Cycles – Project Update

Lalit Chordia, PhD, Marc Portnoff

Grant Musgrove, Klaus Brun

Thar Energy, LLC © 2018 All Rights Reserved

DE-FE0026273

Outline

- Introduction to Thar Energy
- Project Overview
 - \circ Objectives
 - Participants
 - **o** Task Summary

Project Recap

- **o STEP Recuperator Criteria**
- Recuperator Concept Down Select
- Scaling Considerations
- Project Update
 - Prototype Design & Fabrication
 - **o** Prototype Performance Testing
- Project Summary

DE-FE0026273

Thar Energy, LLC © 2018 All Rights Reserved

The Thar Brand - Over 25 years of Innovation with "Green" Supercritical Fluid Technologies

Design and commercialization of supercritical systems & major components

Over 5,000 scientific instruments installed

Direct Exchange, R744 (CO₂) Geothermal Heating & Cooling

Heat Exchangers

150 Gamma Drive Pittsburgh, PA 15238 www.tharenergyllc.com

Thar Timeline (cont.)

Heat Exchangers are key to improving sCO₂ power cycle efficiency and costs

Thar Energy - Manufacturer of COMPACT Heat Exchangers for sCO₂ Power Cycles

 Recuperators kWt to MWt Heaters Gas Coolers **Primary** Heat Input Heater Water Coolers **High Temp** Low Temp Recuperator Recuperator **Optimized Material Use** Aluminum Generator Carbon Steel Turbine Alloy Steel Compressor Recompressing Stainless Steels Compressor Nickel Super Alloys **Typical sCO₂ Recuperated Recompression Brayton Cycle** I Cooling ↓

Air

150 Gamma Drive Pittsburgh, PA 15238 www.tharenergyllc.com

Sunshot Primary Heater HX Design – 2.5 MWt

Hot Gas to sCO₂ HX Inconel 740H Construction

Design Conditions: Gas Fired Burner/Blower Outlet Temperature: 870°C sCO₂ Outlet Temperature: 715°C @ 255 bar

Thar Energy, LLC © 2018 All Rights Reserved

150 Gamma Drive Pittsburgh, PA 15238 www.tharenergyllc.com

Installed at SwRI Thar Energy's sCO₂ Primary Heater

A Thar Energy

Direct Fired Oxy-Fuel Combustor for sCO₂ Power Cycles

Oxy-Combustion

- High Cycle Efficiency
- Combustion occurs in the working fluid
- Facilitates integrated carbon capture
- Water separation
- Compatible with dry cooling techniques
- Requires compact and efficient oxygen separation

Project Partners:

- Southwest Research Institute
- Georgia Tech
- University of Central Florida
- GE-GRC
- US DOE, DE-FE002401

1 MWt Demonstration Test Facility

150 Gamma Drive Pittsburgh, PA 15238 www.tharenergyllc.com

Project Overview

Thar Energy, LLC © 2018 All Rights Reserved

Objective:

- Advance high-temperature, high-differential-pressure recuperator technologies suitable for use in sCO₂ Recompression Brayton Cycle (RCBC)
- Evaluate, advance, and demonstrate recuperator concepts, materials, and fabrication methods that facilitate the commercial availability of compact and low cost recuperators for RCBC conditions (e.g. turbine inlet temperatures exceeding 700°C, and differential pressures on the order of 200 bar)
- Emphasis placed on scalable solutions able to accommodate plant sizes from 10 - 1,000 MWe

Program will:

- (1) Address critical design, materials, and fabrication challenges
- (2) Significant impact on recuperator cost, performance, and scalability

Project Participants

Lalit Chordia, Danyang Li, Ed Hoppe, Peter Shipe, Tom Koger, Marc Portnoff

Grant Musgrove, Klaus Brun, Stefan Cich, C.J. Nolen, Anthony Costanzo, Kevin Hoopes, Shane Coogan, Griffin Beck, Larry Miller, Melissa Poerner, Matt James, Josh Schmitt, Elliott Bryner, Fang Pan, Nick Mueschke, David Ransom

Devesh Ranjan, Sandeep Pidaparti

SOPO Tasks

A <u>scaled prototype</u> will verify the design process and technology before designing for 47 MWt

- Task 1.0Project Management and Planning
- Task 2.0Engineering Assessment of Advanced Recuperator Concepts

Other Concepts from brainstorm

Techno-Economic Analysis for selected recuperator concepts

- Task 3.0Preliminary design (detail design of 100 kWt prototype)
- Task 4.0 100 kWt prototype fabrication and testing

Go/No-Go Milestone for Budget Period 2

- Task 5.0Detail design of 47 MWt recuperator
- Task 6.0Fabrication of 47 MWt recuperator

Thar Energy, LLC © 2018 All Rights Reserved

150 Gamma Drive Pittsburgh, PA 15238 www.tharenergyllc.com

Project Recap

- STEP Recuperator Criteria
- Recuperator Concept Down Select
- Scaling Considerations

Develop a Scalable, High Temperature Recuperator for STEP Conditions

Updated STEP Cycle Conditions – 8/18/16

STEP sCO₂ Cycle Assumptions:

- Net electric power output = 10 MWe
- Turbine efficiency = 85%
- Generator efficiency = 98.5%
- Main Compressor efficiency = 82%
- Bypass Compressor efficiency = 78%
- Compressor Motor efficiency = 96.5%
- HX pressure drop/pass = 138 kPa
- Temperature approach = 10°C
- Mass flow = 101.5 kg/s

Comparison of Recuperator Design Criteria

Criteria	Initial	Updated
Thermal Capacity	46.6 MWt	45.9 MWt
Thermal Effectiveness	96%	97%
Pressure Loss	∆P _h < 1.5% (1.3 bar) ∆P _c < 0.6% (1.3 bar)	
Temperature Limit	581°C	577°C
Differential Pressure	152 bar	
Life	30,000 hr	
Cost	< \$100 / kWt	
Package Dimensions	8.8 x 3.6 x 2.6 m	

Heat Exchanger Design

- Area Density (Microchannel passage size)
- Counter Current flow
- Checker Board Flow Pattern
- Passage Shape
- Surface Effects
- Turbulent vs Laminar flow

Thar Energy, LLC © 2018 All Rights Reserved

NTU

First Cost vs Life Cycle Costs

- Smaller passages are more susceptible to plugging, fouling and are harder to maintain
- Lower cost alloys can be more susceptible to corrosion
- HX design susceptibility to thermal fatigue at scale

Recuperator specifications influence cost

Relatively independent for the heat exchanger concepts evaluated

Approach Temperature

150 Gamma Drive Pittsburgh, PA 15238 www.tharenergyllc.com

H740 Allow

H282 Alow

H230 Allow

H625 Allow

Sanicro 25 Allov

----- 740 CR 10K hr

— 230 CR 10K hr

Sanicro25 CR 10K hr

—— 316 SS CR 10K hr – 610°C

Recuperator Design

Goal: Meet performance requirements and provide margin of safety while minimizing over design

650

Temperature (°C)

700

750

800

850

900

950

1000

Recuperator Temperature & Pressure Rated Design Points

	Temp.	Pres.		
Condition	(°C)	(bar)	C	Comment
Operating Point	581	240	from Step facility	/ process schematic
Rated Design Pt. 1	591	264	T+10°C,	P+10%
Rated Design Pt. 2	611	280	T+30°C (~5%),	P+ 5% + PSV setting
Rated Design Pt. 3	640	293	T+10%,	P+10% + PSV setting

Guidance provided by ASME and Industrial Standards (e.g. NORSOK)

Team Recommendation: Rated Design Point 2 *Provides a margin of safety with minimum over design.*

State-of-the-art sCO₂ HX were reviewed in detail

Project criteria:

47MWt, 240 bar, 581°C, 96% Effectiveness, *∆P* < 1.3 bar, <\$100/kWt

Insufficient information in the literature to demonstrate state-of-the-art sCO₂ HX could meet cost specification

Recuperator Concepts Selected from Brain Storming

The Microtube, Corrugated & Stacked-Sheet Recuperator Concepts were *down selected* for low complexity and cost

47MWt, 240 bar, 581°C, 96% Effectiveness, *∆P* < 1.3 bar, <\$100/kWt

Thar Energy, LLC © 2018 All Rights Reserved

150 Gamma Drive Pittsburgh, PA 15238 www.tharenergyllc.com

HTR Recuperator Concepts Engineering Analysis & Down Select

- Thermal-Hydraulic performance modeling and analysis
- Advanced manufacturing methods and tolerance
- Fabrication cost analysis

Subtractive vs. Additive Manufacturing

- Laser cutting
- Laser welding
- Water jet cutting
- 3D metals printing
- Electrochemical etching
- Electrochemical machining (ECM)
- Electro discharge machining (EDM)
- EDM wire cutting
- Sheet bending/forming
- Metal plating
- Stamping
- Brazing

Thar Energy, LLC © 2018 All Rights Reserved

- Welding
- Diffusion bonding

46 MWt Microtube Recuperator

Smaller, modular tube bundles are preferred to a single large tube bundle design

- Factory fabricated
- Economies of scale lower costs
- Removable tube bundles for maintenance and repair
- Each tube bundle has its own floating tube sheet
- 200 MWt unit meets shipping criteria

Recuperator Concepts Engineering Analysis

46 MWt, 280 bar, 610°C, 97% Effectiveness, *∆P* < 1.3 bar, <\$100/kWt

150 Gamma Drive Pittsburgh, PA 15238 www.tharenergyllc.com

Project Update

- Prototype Design & Fabrication
- Prototype Performance Testing

Stacked-sheet Recuperator Concept (SSHX)

Initially discussed as manufacturing method

- Individual sheets have flow channels cut, punched or etched
- Individual sheets are stacked and joined (brazed, diffusion bonded)
- Manifolds/headers are added to distribute flow (stacked sheets, traditional machining, additive mfg)

Opportunity to enhance recuperator performance by controlling passage size, shape and surface effects without significantly adding manufacturing costs.

Stacked Sheet Recuperator Concept

Manufacturability effects:

- Surface roughness characteristics in the passages
- Alignment of sheets and manufacturing tolerances
- Diffusion bonding vs. brazing
- QA/QC (e.g. ultrasonics, XCT, optical scanning)

Pressure containment:

- High pressure loading and thermal growth
- Material thickness between passages for containment

CFD Pressure Distribution

Manifold/Header Design:

Ensure uniform flow distribution through the core

CASE STUDY

SSHX and Printed-Circuit HX Mechanical & Thermal Stress Analysis

TharEnergy

SSHX: The bond between sheets is <u>parallel</u> to the mechanical stresses and <u>perpendicular</u> to the thermal gradient stresses Improves structural integrity and thermal compliance

Printed-Circuit HX: *The bond* between sheets is <u>perpendicular</u> to the mechanical stresses and <u>parallel</u> to the thermal gradient stresses

SSHX Manufacturing Options Extensive discussions with Vendors

Subtractive vs. Additive Manufacturing

- Stamp or punch operations (Opacity ~73%)
- Laser Drilling
- Water Jet Drilling
- High Pressure Drilling
- Chemical etching
- Electrochemical machining
- Electro-polishing
- Mechanical Grinding
- Plate and Sheet Re-rollers
- Additive Manufacturing 3D printing (Opacity ~38%)

Prototype Recuperators

Criteria	3D-SSHX Prototype	Laser-SSHX Prototype
Manufacturing Method	3D Printed	Laser Cut Sheets
Materials	Inconel 625	Stainless 347H
Channel Pattern	Circle-Star	Circle-Circle
Manifold Design	3D Printed	Laser Cut Sheets
Joining Method	Diffusion Braze	Diffusion Braze
Opacity	~46%	~73%

3D-SSHX

57% volume

decrease

46 MWt Laser-SSHX Recuperator

Example: Eight stacked Laser-SSHX sub-modules

STEP Recuperator Prototype Test Loop

- Test thermal performance over a range of operating conditions
- Compare actual to predicted performance
- Rank prototypes by performance

84 bar.

30°C

HXA1

TE_01

0.141 kg/s

8.46 kg/min

TE_06

Air-sCO2

CO₂ Supply 45 bar

Booster

Pump

sCO₂ Brayton Power Cycle Heat Exchanger Test Facility

Reconfigurable Test Loop

- Pressures to 275 bar
- Temperature to 700°C

VFD

TE_B1

• sCO₂ mass flow to 10 kg/min

PT_B2

TE_02

Thar Energy, LLC © 2018 All Rights Reserved

HX Model Heat Transfer Equations

Models selected from established heat transfer and pressure drop equations for the best accuracy compared to testing data

HX Performance Heat Transfer Equations

 $\begin{array}{ll} \mbox{Effectiveness, } \pmb{\epsilon} = \pmb{Q}_{act} \div \pmb{Q}_{max} \\ \mbox{Q}_{act} = \min(\substack{Q_{2-3}, Q_{6-7})\\ Q_{2-3} = \dot{\pmb{m}} \times (h_3 - h_2)\\ Q_{6-7} = \dot{\pmb{m}} \times (h_6 - h_7) \end{array} \\ \begin{array}{ll} \mbox{Q}_{max} = \min(\substack{Q_{h max}, Q_{c max}})\\ \mbox{Q}_{h max} = \dot{\pmb{m}} \times (h_6 - h(T_2, P_7))\\ Q_{c max} = \dot{\pmb{m}} \times (h(T_6, P_3) - h_2) \end{array} \\ \begin{array}{ll} \mbox{AU} = \pmb{Q}_{act} \div \pmb{T}_{Ln} \\ \mbox{T}_{Ln} = (\Delta T_i - \Delta T_{ii}) \div LN \ (\Delta T_i \div \Delta T_{ii}) \\ \Delta T_i = T_6 - T_3 \\ \Delta T_{ii} = T_7 - T_2 \end{array}$

Approach Temperature = $T_7 - T_2$ %

% Pressure Drop % $\Delta P = (Pin - Pout) / Pin$

Prototype 3D-SSHX Recuperator Test Loop Steady State Time vs. Temperature Plot

Mounted in test loop before final insulation installed

image during

commissioning

Prototype 3D-SSHX Recuperator Test Loop Steady State & Energy Balance Plots

Good Energy Balance, < 2% error

Prototype 3D-SSHX Recuperator Energy Transfer & Approach Temperature Plots

Meets design specifications

Approach temperature plot

Prototype 3D-SSHX Recuperator Pressure Drop Plots

Meets design specifications

Low Pressure $sCO_2 \Delta P$

High Pressure $sCO_2 \Delta P$

Data confirms 3D-SSHX Recuperator Performance

Transferred Heat Q

○ 152 bar #1 ● 152 bar #2 ▲ 202 bar □ 256 bar

Effectiveness

Good correlation between Design & Actual HX Performance Data

Data confirms 3D-SSHX Recuperator Performance

Heat Transfer Coefficient, UA

Criteria	Updated - 8/16/16	3D-SSHX Prototype
Thermal Capacity	45.9 MWt	\checkmark
Thermal Effectiveness	97%	\checkmark
Pressure Loss	ΔP_{h} < 1.5% (1.3 bar) ΔP_{c} < 0.6% (1.3 bar)	✓ ✓
Temperature Limit	577°C	\checkmark
Differential Pressure	152 bar	\checkmark
Life	30,000 hr	TBD
Cost	< \$100 / kWt	\checkmark
Package Dimensions	8.8 x 3.6 x 2.6 m	✓

Meets or exceeds program requirements

Summary

- Stacked Sheet and Microtube 46 MWt Recuperator Concepts meet STEP Performance and Cost Criteria and can be scaled to industrial thermal capacity requirements
 - Stacked-Sheet Concept has advantages of lower cost, smaller package size, and potential for future enhancements
 - Microtube Concept has advantages of using a floating tube sheet to accommodate thermal stresses, and a removable tube bundle that accommodates cleaning, maintenance and repair
- Prototype recuperators have been designed and fabricated
 - ✤ 3D-SSHX
 - Laser-SSHX
- sCO₂ Heat Exchanger Test Loop has been successfully operated
 3D-SSHX prototype recuperator design meets or exceeds HX performance requirements
 - Laser-SSHX prototype testing is scheduled for this quarter.

150 Gamma Drive Pittsburgh, PA 15238 www.tharenergyllc.com

Thank you for your kind attention

Questions?

Work supported by US DOE under DE-FE0026273 Richard Dennis, Advanced Turbines Technology Manager Seth Lawson, Program Officer, Advanced Energy Systems Division