

Materials Issues for (1) Advanced Supercritical CO₂ Cycles and (2) High Efficiency Gas Turbines

B. A. Pint

Corrosion Science & Technology Group Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge, TN 37831

October 30, 2018

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Acknowledgments

- TBC task leaders:
 - J. A. Haynes coating procurement
 - G. Garner, M. Stephens oxidation experiments
 - M. J. Lance characterization (PSLS)
 - S. Sampath, Stonybrook U. processing
 - K. Kane, Virginia Commonwealth U. modeling
- sCO₂ team:
 - Jim Keiser autoclave design
 - Mike Howell construction and operations
 - Characterization: R. Brese, T. Lowe, T. Jordan (metallography), M. Lance (GDOES)
- Alloys: Howmet, Siemens, Capstone Turbines, Haynes, Special Metals, Sandvik
- Research sponsored by: U. S. Department of Energy, Office of Fossil Energy
 - TBC project: Turbine Program (Rin Burke)
 - sCO₂ project: Crosscutting Technology Program (Vito Cedro)

Looking for coating solutions

- More durable coatings will benefit
 - NGCC (natural gas combined cycle)
 - IGCC (i.e. coal syngas/H₂)
- Focus on alumina scale as "weak link"
- Partner with industry to advance testing
 - pursue deployment of advanced TBC
- Project transitioning to EBC
 - Protection for Si-based ceramic composites
 - Initial coating studies on high purity CVD SiC

Environmental barrier coating = durable, H₂O stable, ceramic coating

ORNL: New environments (higher H₂O, CO₂, SO₂)

Explored different superalloy substrates

Thermal barrier coating =

oxidation-resistant, metallic bond coating + durable, low conductivity, ceramic top coating

Coatings for Land-Based Turbines

- Focus on thermally-sprayed coatings
 - HVOF: high-velocity oxy-fuel
 - APS: air plasma spray
 - VPS: vacuum plasma spray
- Current land-based turbine issues:
 - first cost drives sales
 - temperature/efficiency
 - Not as important in US with cheap gas
 - hot corrosion in blade root
 - want higher Cr content alloys or coatings

Material	Ni	Со	Cr	Al	Y	Hf	Si	Ti	W	Ta	Mo	С	Other (ppmw)
YHfSi Bond Coating	48.0	21.6	16.7	12.3	0.68	0.25	0.36	<	0.01	<	<	<	2 S
Y-only Bond Coating	47.1	23	16.6	12.8	0.42	<	0.04	<	0.02	<	<	<	8 S
Alloy 247	59.1	10.2	8.5	5.6	<	1.32	0.06	1.0	10.0	3.2	0.6	0.2	200 Re, 11 S

() 0

Temperature

All testing done in simulated exhaust gas: air + 10%H₂O

Many studies have shown that water vapor decreases FCT life

lid

1-h cycles: automated cyclic rig (10 min cool in lab. air) 20 cycles/day

100-h cycles (base-load): Tube furnace with endcaps 1 cycle/week

2015: Moving towards coating more realistic substrates

AM 718 "blade"

Fig. 1. Picture of a modified aerofoil-shaped specimen. P1, P2, P3, P4 and P5 are convex areas whereas P6 and P7 are concave.

Cranfield 2013

I thought it would be easy to switch to "rodlet" specimens It was easier to imagine than to coat...

AM 718 "blade"

2015: 247 rods

Coating development not linear with time

HVOF bond coatings performed poorly

CAK RIDGE

- CTSR parametric study
- Three top coat variations
 - 1 layer: high porosity YSZ
 - 2 layer: dense inner layer
 - 3 layer: outer Gd₂Zr₂O₇
- Concern about low bond coating roughness

Excellent results with APS layer on top of HVOF bond coating

- Standard testing at 1100°C
 - $\text{Air} + 10\% \text{H}_2\text{O}$
 - 100-h cycles
- Rod specimens
 - Three different top coatings
 - 1 layer: extra porous
 - 2 layer: dense inner YSZ
 - 3 layer: add Gd₂Zr₂O₇ outer layer
 - Two bond coatings
 - Standard HVOF
 - HVOF+ ~200 μm APS "flash"

Is roughness really the "flash" coating advantage? Stony Brook: could not correlate roughness with lifetime

- 1100°C (2102°F)
- 24-h cycles
- Laboratory air
- 3 specimens/group
- 15 profilometry measurements to determine roughness

Last phase: what about ~50 µm flash coating? If roughness is key, is Y-Hf-Si needed? Was longer life due to extra-thick bond coating?

Similar lifetime for both Y-only and YHfSi-flash coated rods Outperformed VPS bond coatings

Flash Y-only Rod (2900 h)

Flash YHfSi Rod (2800 h)

How would ~50 µm flash coating do in 1-h cycles? If roughness is key, is Y-Hf-Si needed?

Light microscopy of as-sprayed disks

- Dense YHfSi HVOF layer in each case
- Outer APS flash coatings contain internal oxidation generated during APS deposition
- More internal oxidation in YHfSi APS layer
 - Sprayed same powder size
 - Due to higher RE content?

Material	Ni	Co	Cr	Al	Y	Hf	Si	Ti	W	Ta	Mo	С	Other (ppmw)
YHfSi Bond Coating	48.0	21.6	16.7	12.3	0.68	0.25	0.36	<	0.01	<	<	<	2 S
Y-only Bond Coating	47.1	23	16.6	12.8	0.42	<	0.04	<	0.02	<	<	<	8 S
Alloy 247	59.1	10.2	8.5	5.6	<	1.32	0.06	1.0	10.0	3.2	0.6	0.2	200 Re, 11 S

Starting bond coating conditions

- HVOF-only coating slightly thicker (but had lowest life)
- Roughness did increase with flash coating

CAK RIDGE

National Laboratory

- Measured fractal dimension (D_f) as described by Nowak et al. (Jülich)
 - Fairly small differences measured to explain 12% and 71% increase in lifetime

Y-only flash coating out-performed HVOF by 71%

HVOF as baseline 50 µm APS flash coating Y only vs. YHfSi 5 specimens of each coating 1-h cycles 1100°C Air+10%H₂O

Statistically significant results! Manuscript submitted to *Oxidation of Metals*

CAK RIDGE

Average compressive residual stress in the Al₂O₃ scale declines with cycling as damage accumulated

• The rate of stress decline was fastest for the HVOF-only bond coating which reaches a lower mean compressive stress prior to failing than the two bi-layer coatings.

Failure microscopy: HVOF and flash-coat differences

- HVOF-only: smoother interface, more uniform oxide
- Much more oxide formed with flash coatings
- Underlying HVOF layer inhibited superalloy oxidation
- Intermixed metal/oxide layer: inhibited interface crack growth
- Intermixed metal-oxide layer: did it create a graded interface & reduce CTE mismatch?

Ran two more flash-coated specimens to 300 cycles: YHfSi flash coating: AI was more depleted in HVOF layer

After 300 1-h cycles at 1100°C in air+10% H_2O

YHfSi: more oxide = more Al consumed = shorter life

Micro-X-ray Computed Tomography (µCT) shows promise for characterizing plasma sprayed coatings

2 X 2 mm sample

Y-only Bi-layer, 300 cycles, 1100°C (Top to Bottom slices)

- Zeiss Xradia 520 Versa μCT has a resolution from 20 μm down to 1 μm
- PS splat size, porosity shape and size, oxide scales and β -NiAl regions can all be characterized non-destructively.

Why did the Y-only flash coating increase lifetime 71%?

- 1. Intermixed alumina-metal layer inhibited crack growth; possibly acted to reduce CTE mismatch in system
- 2. Dense HVOF layer was a barrier for substrate attack and provided an AI reservoir for the flash coating (inhibited Ni-rich oxide).
- 3. Less reactive element in the Y-only flash coating reduced the rate of AI consumption, thereby increasing lifetime

Convex surface provided a coating challenge

2017: industry feedback helped achieve uniform coating (Feedback was "blade" was too difficult to uniformly coat)

Scale on the concave side decreased in residual stress more rapidly than the convex side

- Geometry taking us closer to real components
- Much more difficult to coat uniformly
- Coating failed after 9 x 100-h cycles

2nd Iteration Modeling of 900°C coating performance

Experiments (isothermal)

National Laboratory

ORNL coating project converting to EBC study in 2019

- FY18 defined an initial task to coat CVD SiC with silicate coating
 - Continuing to partner with Stony Brook University
- Building new cyclic rig for >1500°C steam testing
- Focus on next generation EBC
 - 1425°C (2600°F) without Si bond coating used at ≤1300°C
 - Initial topic: role of EBC porosity on SiC substrate reaction

Supercritical CO₂ Allam cycle: first clean fossil energy?

NetPower 25MWe demo plant (Texas)

Exelon, Toshiba, CB&I, 8Rivers Capital: \$140m

The prototype NET Power plant near Houston, Texas, is testing an emission-free technology designed to compete with conventional fossil power.

CAK RIDGE

National Laboratory

26

May 2018: announced first firing

Material challenges:

Combustor: 1150°C (!?!) Turbine exit: 750°C/300 bar Combustion impurities: O_2 , H_2O , SO_2

Moving forward with limited compatibility data! As audacious as Eddystone in 1960

2.75% of Mass

Fossil/Solar focus on >700°C for high efficiency sCO_2 sCO₂ applications

rature

>700°C: favors precipitation-strengthened **Ni-based alloys**

- Low critical point (31°C/7.4 MPa) High, liquid-like density Flexible, small turbomachinery

27

National Laboratory

CAK RIDGE

Feher, 1965 50% sCO₂ eff @ >720°C

Cooperation between two sCO₂ projects at ORNL

DOE Fossil Energy

- 750°C/300 bar: 500-h cycles
- Focus on impurity effects for direct-fire
 - Baseline research grade (RG) CO₂
 - New autoclave with controlled $O_2 + H_2O$
- Alloys
 - 310HCbN (HR3C, Fe-base SS)
 - 617
 - 230
 - 247 (Al₂O₃-forming superalloy)
 - 282 (Heat #1)
 - 740

28

DOE SunShot (CSP)

- 750°C/300 bar: 500-h cycles
 - Including 750°C/1 bar, 10-h cycles
- Focus on industrial grade (IG) CO₂
 - Indirect fired (closed loop)
- Alloys
 - Alloy 25 (Fe-base SS Sanicro 25)
 - 625
 - 740
 - 282 (Heat #2)

		Air	RG CO ₂	IG CO ₂	$FE: CO_2 + O_2 / H_2 O$
Cooperative test matrix:	1 bar	5,000 h	5,000 h	5,000 h	
SAK RIDGE	300 bar		5,000 h	5,000 h	4,000+ h

CO₂ compatibility evaluated three ways at 700°-800°C

500-h cycles

Correct temperature and pressure

4-5 cm² alloy coupons

CAK RIDGE

Autoclave: 300 bar sCO₂ Tube furnace: 1 bar CO₂ 500-h cycles

Same cycle frequency as autoclave

Box furnace: Lab. Air 500-h cycles (baseline)

"Keiser" rig: 500-h cycles, 1-43 bar CO₂

Study impurities at 1-43 bar

Baseline of research grade (RG) CO_2 : $\leq 5 \text{ ppm } H_2O$ and $\leq 5 \text{ ppm } O_2$ industrial grade (IG) CO₂: 18 ± 16 ppm H₂O and ≤ 32 ppm O₂

Range of alloys have been evaluated

	Ni	Cr	Fe	Со	Refractories	Ti	AI	S	Other
Grade 91	0.1	8.3	90	0.01	0.9Mo,0.1Nb	< 0.01	< 0.01	10	0.03Cu,0.3Mn,0.1Si,0.3V
304H	8.4	18	70	0.1	0.3Mo,0.01Nb	< 0.01	< 0.01	29	0.4Cu,1.6Mn,0.3Si,0.07N
25	25	22	43	1.5	3.5W,.5Nb,.2Mo	0.02	0.03	8	3.0Cu, 0.5Mn, 0.2Si, 0.2N
310HCbN	20	25	51	0.3	0.1Mo,0.4Nb	0.01	< 0.01	<10	0.1Cu,1.2Mn,0.3Si,0.3N
230	61	23	2	0.1	1Mo, 12W	0.01	0.3	9	0.02La
625	61	22	4	0.1	9Mo, 4Nb	0.2	0.1	<10	0.2Si,0.1Mn,0.02C
617	54	22	1	13	9Mo, 1Nb	0.3	1.1	<3	
740	48	23	2	20	0.3Mo, 2Nb	2.0	0.8	<10	0.5Si,0.3Mn,0.03C
282	58	19	0.2	10	8Mo	2.2	1.5	<1	0.1Si,0.1Mn,0.06C
247	60	8	0.03	10	10W,3Ta,1Mo	1.1	5.3	<1	1.3Hf,0.14C

Compositions measured using ICP-OES and combustion analyses

Thermodynamics: Oxygen levels similar in steam/CO₂ Concern about high C activity at m-o interface

Impurities (2015): 1atm, 500 h, many alloys (1 of each)

800°C

750°C 1 bar CO₂+O₂ 750°C 1 bar CO₂+H₂O 750°C 1 bar air 750°C 1 bar CO₂ in Spinistis ser oxide nodule 250 µm inner oxide $50\,\mu m$ Gr.91 Gr.91 Gr.91 Gr.91 chromia scale 10 µm 10 µm 230 230 230 230

National Laboratory

Impurities (2017): fewer alloys (3 of each), 1 and 25 bar

Two alloy 230 reaction tubes:

Pressure: 1 and 25 bar

Gas: RG CO_2 $CO_2 + 10\%H_2O$ $CO_2 + 10\%H_2O + 0.1\%SO_2$

500h at 800°C: SO₂ suppressed internal oxidation at 1 bar

Similar results for SO₂ reported by Young (UNSW) and Quadakkers (Jülich)

500h at 800°C: at 25 bar, 0.1%SO₂ resulted in more attack

Haynes 282: Ni-20Cr-11Co-9Mo-1.6Al-2.2Ti

MarM247 superalloy: Ni-9Cr-10Co-1Mo-6AI-10W-3Ta-1.4Hf

CAK RIDGE

2018: finally completed multi-pump 300 bar autoclave Clearly see an effect of impurities

Goal: 1%O₂+0.25%H₂O (industry suggestion) Not easy to control at 300 bar

Research grade (RG) CO_2 : $\leq 5 \text{ ppm H}_2O$ and $\leq 5 \text{ ppm O}_2$

First time: impurities caused a higher mass gain

RG CO₂ + 1%O₂ + 0.25% H₂O

Only 4000 h completed

300 bar effect

CAK RIDGE

Fe-based alloys: strongest effect

SEM/EDS: Fe/Ni-rich oxide forming with impurities

Additional characterization in progress...

Summary: impurity and pressure effects

- Want to study impurities in sCO₂ for direct-fired concept at 750°C
 - Comparison of industrial and research grade CO₂ at 1 and 300 bar
 - 2018 sCO₂ symposium paper
 - Effect of H_2O and $0.1\%SO_2$ at 1 and 25 bar
 - 2018 NACE Corrosion paper
- 300 bar sCO₂+1%O₂+0.25%H₂O
 - Increased mass gains observed for most alloys
 - Higher Fe/Ni incorporated into scale
- Current hypotheses

CAK RIDGE National Laboratory

- Higher P = denser, more protective scale
 - More characterization of thin scales required
- SO₂ suppresses C & OH effects (Young & Quadakkers): can we take advantage?
- Future work at lower temperatures and more Fe-based alloys

Backup slides

In-situ coating characterization using PLPS through YSZ

PLPS: photo-stimulated luminescence piezospectroscopy

43 **CAK RIDGE** National Laboratory

PLPS results: very weak signal through 300µm top coating

Similar residual stress in alumina scale on both bond coatings

Higher residual stress in flat disk specimen compared to rods

CAK RIDGE

2015-2018: created a baseline in IG sCO₂ and CO₂

Lines: median values Box: 25-75% Whiskers: min./max.

CAK RIDGE

Industrial grade (IG) CO_2 : 18±16 ppm H₂O and ≤ 32 ppm O₂

First 300 bar impurity data obtained New rig completed first cycle in February 2018 Second cycle completed March 27

Goal: 1%O₂+0.25%H₂O (industry suggestion) Not easy to control at 300 bar

Average of 3 specimens in first experiment

230

740

282#1

282#2

247

617B

No plans to add SO₂ to autoclave

0

25SS 310HN

625

800°C light microscopy: strong variations observed for 304H RG C

800°C Total Reaction (including internal oxidation): reduced in 25 bar except with 0.1%SO₂

0.1%SO₂ 1 bar: inhibited negative CO₂/H₂O effect, especially for 304H Similar result for Young (CO₂+H₂O) and Quadakkers (H₂O) on Fe-Cr Like SO₂ poisoning of metal dusting
0.1%SO₂ 25 bar: sulfidation attack with 25X higher p_{S2}

Eddystone (1960): when coal-fired boiler progress stopped

AEP's John W. Turk Plant (Arkansas, US) 2013

Figure 1 Illustrating the progress in the working steam pressure for utility-type boilers over the last 100 years.

Figure 2 Illustrating the progress in final steam temperature for utility-type boilers over the last 100 years.

Source: J. Henry (2007) Mater. High Temp. Eddystone (1960): 613°C/34.5 MPa (1135°F, 5000 psi) Turk (USC, 2013): 599°/607°C SH/RH, 25.3MPa (1110/1125°F, 3400 psi) A-USC: 760°C/34.5 MPa (1400°F/5000 psi)

Many variables can be considered

- Temperature
 - Cr₂O₃ better C barrier at nigher T (?)• Oxygen
 - Steels more T limited than in steam

- Pressure
 - No strong effect of increasing P
- Thermal cycling
 - Stainless steel attacked at 700°-750°C

- H₂O
 - Negative, especially steels

ORNL & UW different results

- CO
 - UW 1%CO results
- SO₂
 - Complicated...

Indirect- vs. direct-fired sCO₂ systems (i.e. closed vs. open) Closed cycle: "pure" CO₂ 100-300 bar sCO₂ + impurities (O₂, H₂O...)

DOE SunShot funding

DOE Fossil Energy funding

Thermodynamics: Oxygen levels similar in steam/CO₂ Concern about high C activity at m-o interface

CAK RIDGE

National Laboratory

52

Also Fujii and Muessner, 1967

AGR gas composition is highly carburizing, unlike sCO₂ 43 bar, CO₂ +1%CO-0.03%H₂O-0.03%CH₄-0.01%H₂

500h at 800°C: 1 bar, 0.1%SO₂ reduced internal oxidation at 25 bar, 0.1%SO₂ resulted in more attack

Similar results for SO₂ reported by Young (UNSW) and Quadakkers (Jülich) Hypothesis that S inhibits absorption of C species

