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Looking for coating solutions

• More durable coatings will benefit
– NGCC (natural gas combined cycle)
– IGCC (i.e. coal syngas/H2)

• Focus on alumina scale as “weak link”
• Partner with industry to advance testing

– pursue deployment of advanced TBC

• Project transitioning to EBC
– Protection for Si-based ceramic composites
– Initial coating studies on high purity CVD SiC

Superalloy substrate

Dense or DVC YSZ Layer - High KIC

Erosion & CMAS resistant GDZ Layer 
Dense or DVC architecture

Porous TBC (YSZ or GDZ) 
Low conductivity

Low Elastic modulus

Bond coat

ORNL: New environments (higher H2O, CO2, SO2)

CTSR:
Multi-layer 

top coatings

Al2O3 scale
Optimal bond 

coating:
PWA286
Y+Hf+Si

Thermal barrier coating =
oxidation-resistant, metallic bond coating + 

durable, low conductivity, ceramic top coating

Explored different superalloy substrates

Environmental barrier coating =
durable, H2O stable, ceramic coating
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Coatings for Land-Based Turbines
• Focus on thermally-sprayed 

coatings
– HVOF: high-velocity oxy-fuel
– APS:  air plasma spray
– VPS:  vacuum plasma spray

• Current land-based turbine issues:
– first cost drives sales
– temperature/efficiency

• Not as important in US with cheap gas
– hot corrosion in blade root

• want higher Cr content alloys or coatings Land-based Aircraft

Material Ni Co Cr Al Y Hf Si Ti W Ta Mo C Other (ppmw)
YHfSi Bond Coating 48.0 21.6 16.7 12.3 0.68 0.25 0.36 < 0.01 < < < 2 S
Y-only Bond Coating 47.1 23 16.6 12.8 0.42 < 0.04 < 0.02 < < < 8 S

Alloy 247 59.1 10.2 8.5 5.6 < 1.32 0.06 1.0 10.0 3.2 0.6 0.2 200 Re, 11 S
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All testing done in simulated exhaust gas:  air + 10%H2O
• Many studies have shown that water vapor decreases FCT life

1-h cycles:
automated cyclic rig

(10 min cool in lab. air)
20 cycles/day

100-h cycles (base-load):
Tube furnace with endcaps

1 cycle/week

lid

furnace
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2015:  Moving towards coating more realistic substrates

AM 718 “blade”

Jülich 2014

Cranfield 2013
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I thought it would be easy to switch to “rodlet” specimens
It was easier to imagine than to coat…

AM 718 “blade”

Coating development not linear with time
2015: 247 rods
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HVOF bond coatings performed poorly

• CTSR parametric study
• Three top coat variations

– 1 layer:  high porosity YSZ
– 2 layer:  dense inner layer
– 3 layer:  outer Gd2Zr2O7

• Concern about low 
bond coating roughness
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Excellent results with APS layer on top of HVOF bond coating

• Standard testing at 1100°C
– Air + 10%H2O
– 100-h cycles

• Rod specimens
– Three different top coatings

• 1 layer: extra porous
• 2 layer: dense inner YSZ
• 3 layer: add Gd2Zr2O7 outer layer

– Two bond coatings
• Standard HVOF
• HVOF+ ~200 µm APS “flash” Not really an APS “flash” 

coating on HVOF
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Is roughness really the “flash” coating advantage?
Stony Brook:  could not correlate roughness with lifetime

• 1100°C (2102°F)
• 24-h cycles
• Laboratory air
• 3 specimens/group
• 15 profilometry 

measurements to 
determine roughness 
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Last phase: what about ~50 µm flash coating?
If roughness is key, is Y-Hf-Si needed?
Was longer life due to extra-thick bond coating?



1212

Similar lifetime for both Y-only and YHfSi-flash coated rods
Outperformed VPS bond coatings 

Flash YHfSi Rod (2800 h)Flash Y-only Rod (2900 h)

epoxyepoxy

Porous YSZPorous YSZ
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How would ~50 µm flash coating do in 1-h cycles?
If roughness is key, is Y-Hf-Si needed?
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Light microscopy of as-sprayed disks 

• Dense YHfSi HVOF layer in each case
• Outer APS flash coatings contain internal oxidation generated during APS 

deposition
• More internal oxidation in YHfSi APS layer

– Sprayed same powder size
– Due to higher RE content?

100 µm

Y-only Flash Coating
(0.42 Y)

YSZ

247

HVOF

APS

YHfSi HVOF-only
(0.68 Y, 0.25 Hf, 0.36 Si)

YHfSi Flash Coating
(0.68 Y, 0.25 Hf, 0.36 Si)

HVOF

APS

HVOF

YSZ

247

YSZ

247

Material Ni Co Cr Al Y Hf Si Ti W Ta Mo C Other (ppmw)
YHfSi Bond Coating 48.0 21.6 16.7 12.3 0.68 0.25 0.36 < 0.01 < < < 2 S
Y-only Bond Coating 47.1 23 16.6 12.8 0.42 < 0.04 < 0.02 < < < 8 S

Alloy 247 59.1 10.2 8.5 5.6 < 1.32 0.06 1.0 10.0 3.2 0.6 0.2 200 Re, 11 S



1515

Starting bond coating conditions

• HVOF-only coating slightly thicker (but had lowest life)
• Roughness did increase with flash coating
• Measured fractal dimension (Df) as described by Nowak et al. (Jülich)

– Fairly small differences measured to explain 12% and 71% increase in lifetime

Starting Bond Coating Thicknesses Starting Roughness and Fractal Dimension
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Y-only flash coating out-performed HVOF by 71% 

HVOF as baseline
50 µm APS flash coating

Y only vs. YHfSi
5 specimens of each coating
1-h cycles
1100°C
Air+10%H2O

Statistically significant results!
Manuscript submitted to Oxidation of Metals

+12%

+71%
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Average compressive residual stress in the Al2O3 scale 
declines with cycling as damage accumulated

• The rate of stress decline was fastest for the HVOF-only bond coating which reaches 
a lower mean compressive stress prior to failing than the two bi-layer coatings. 

N = 3468

620c

760c
1060c

Cycles to Failure
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Failure microscopy: HVOF and flash-coat differences

• HVOF-only: smoother interface, more uniform oxide

• Much more oxide formed with flash coatings

• Underlying HVOF layer inhibited superalloy oxidation

• Intermixed metal/oxide layer:  inhibited interface crack growth

• Intermixed metal-oxide layer:  did it create a graded interface & reduce CTE mismatch?

Y-only Flash, 1080 cyclesYHfSi Flash, 760 cyclesYHfSi HVOF-only, 620 cycles

100 µm 100 µm100 µm

YSZ



1919

Ran two more flash-coated specimens to 300 cycles:
YHfSi flash coating:  Al was more depleted in HVOF layer

YHfSi:  more oxide = more Al consumed = shorter life

Al wt.%

100 µm

Y-only Bi-layer

YHfSi Bi-layer

β-NiAl

SEM images Aluminum EDS Concentration Maps

After 300 1-h cycles at 1100°C in air+10%H2O

Al2O3

Al2O3

100 µm
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Micro-X-ray Computed Tomography (µCT) shows 
promise for characterizing plasma sprayed coatings

Y-only Bi-layer, 300 cycles, 1100°C (Top to Bottom slices)2 X 2 mm sample

• Zeiss Xradia 520 Versa µCT has a resolution from 20 µm down to 1 µm

• PS splat size, porosity shape and size, oxide scales and β-NiAl regions can all 
be characterized non-destructively. 

Sliced Section

1 mm
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Why did the Y-only flash coating increase lifetime 71%?

1. Intermixed alumina-metal layer inhibited crack growth; possibly 
acted to reduce CTE mismatch in system

2. Dense HVOF layer was a barrier for substrate attack and provided 
an Al reservoir for the flash coating (inhibited Ni-rich oxide). 

3. Less reactive element in the Y-only flash coating reduced the rate 
of Al consumption, thereby increasing lifetime

Flash coating

HVOF coating

Substrate

YSZ
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Convex surface provided a coating challenge

2017:  industry feedback helped achieve uniform coating
(Feedback was “blade” was too difficult to uniformly coat)
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Scale on the concave side decreased in residual  
stress more rapidly than the convex side

• Geometry taking us closer to real components
• Much more difficult to coat uniformly 
• Coating failed after 9 x 100-h cycles

Concave

Convex

98 ± 11 µm

59 ± 9 µm

Stress measured is PLPS
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2nd Iteration Modeling of 900°C coating performance

Cr content (%) Distance (µm)
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Experiments (isothermal) Model predictions at 900°C (DICTRA)

Results by K. Kane (VCU) 
and R. Pillai (ORNL)
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ORNL coating project converting to EBC study in 2019
• FY18 defined an initial task to coat CVD SiC with silicate 

coating
– Continuing to partner with Stony Brook University

• Building new cyclic rig for >1500°C steam testing
• Focus on next generation EBC

– 1425°C (2600°F) without Si bond coating used at ≤1300°C
– Initial topic:  role of EBC porosity on SiC substrate reaction
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Supercritical CO2 Allam cycle:  first clean fossil energy?
NetPower 25MWe demo plant (Texas)
Exelon, Toshiba, CB&I, 8Rivers Capital: $140m

Material challenges:
Combustor:  1150°C (!?!)
Turbine exit: 750°C/300 bar
Combustion impurities:  O2, H2O, SO2

Moving forward with limited compatibility data!
As audacious as Eddystone in 1960

May 2018:  announced first firing
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Fossil/Solar focus on >700°C for high efficiency sCO2

>700°C: favors precipitation-
strengthened Ni-based alloys

• Low critical point (31°C/7.4 MPa)
• High, liquid-like density
• Flexible, small turbomachinery

Feher, 1965
50% sCO2 eff @ >720°C

sCO2 applications
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Cooperation between two sCO2 projects at ORNL
DOE Fossil Energy
• 750°C/300 bar: 500-h cycles

• Focus on impurity effects for direct-fire
– Baseline research grade (RG) CO2

– New autoclave with controlled O2+H2O

• Alloys
– 310HCbN (HR3C, Fe-base SS)
– 617
– 230
– 247 (Al2O3-forming superalloy)
– 282 (Heat #1)
– 740

DOE SunShot (CSP)
• 750°C/300 bar:  500-h cycles

– Including 750°C/1 bar, 10-h cycles

• Focus on industrial grade (IG) CO2

– Indirect fired (closed loop)

• Alloys
– Alloy 25 (Fe-base SS Sanicro 25)
– 625
– 740
– 282 (Heat #2)

Air RG CO2 IG CO2 FE: CO2+O2/H2O
1 bar 5,000 h 5,000 h 5,000 h –––

300 bar ––– 5,000 h 5,000 h 4,000+ h
Cooperative test matrix:



29

CO2 compatibility evaluated three ways at 700°-800°C
Autoclave: 300 bar sCO2

500-h cycles
”Keiser” rig:

500-h cycles, 1-43 bar CO2

Tube furnace: 1 bar CO2
500-h cycles

Study impurities at 1-43 bar
Correct temperature and pressure

Same cycle frequency as autoclave

Baseline of research grade (RG) CO2:  ≤ 5 ppm H2O and ≤ 5 ppm O2
industrial grade (IG) CO2:  18±16 ppm H2O and ≤ 32 ppm O2

Box furnace:
Lab. Air

500-h cycles
(baseline)

4-5 cm2 alloy coupons
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Range of alloys have been evaluated

Ni Cr Fe Co Refractories Ti Al S Other
Grade 91 0.1 8.3 90 0.01 0.9Mo,0.1Nb <0.01 <0.01 10 0.03Cu,0.3Mn,0.1Si,0.3V

304H 8.4 18 70 0.1 0.3Mo,0.01Nb <0.01 <0.01 29 0.4Cu,1.6Mn,0.3Si,0.07N
25 25 22 43 1.5 3.5W,.5Nb,.2Mo 0.02 0.03 8 3.0Cu, 0.5Mn, 0.2Si, 0.2N

310HCbN 20 25 51 0.3 0.1Mo,0.4Nb 0.01 <0.01 <10 0.1Cu,1.2Mn,0.3Si,0.3N
230 61 23 2 0.1 1Mo, 12W 0.01 0.3 9 0.02La
625 61 22 4 0.1 9Mo, 4Nb 0.2 0.1 <10 0.2Si,0.1Mn,0.02C
617 54 22 1 13 9Mo, 1Nb 0.3 1.1 <3
740 48 23 2 20 0.3Mo, 2Nb 2.0 0.8 <10 0.5Si,0.3Mn,0.03C
282 58 19 0.2 10 8Mo 2.2 1.5 <1 0.1Si,0.1Mn,0.06C
247 60 8 0.03 10 10W,3Ta,1Mo 1.1 5.3 <1 1.3Hf,0.14C

Compositions measured using ICP-OES and combustion analyses 
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Thermodynamics:  Oxygen levels similar in steam/CO2
Concern about high C activity at m-o interface

Factsage calculations
High carbon activity at Ptotal = 1 bar

What is Pinterface?
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Impurities (2015): 1atm, 500 h, many alloys (1 of each)

700°C

800°C
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Impurities (2017): fewer alloys (3 of each), 1 and 25 bar

304H 230 282 247
(Al2O3-
fomer)

Two alloy 230 reaction tubes:

Pressure:  1 and 25 bar

Gas: RG CO2
CO2+10%H2O
CO2+10%H2O+0.1%SO2
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500h at 800°C:  SO2 suppressed internal oxidation at 1 bar

Similar results for SO2 reported by Young (UNSW) and Quadakkers (Jülich) 

Cr2O3-former

Al2O3-former

1000 ppm SO2
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500h at 800°C:  at 25 bar, 0.1%SO2 resulted in more attack

Haynes 282:  Ni-20Cr-11Co-9Mo-1.6Al-2.2Ti
MarM247 superalloy:  Ni-9Cr-10Co-1Mo-6Al-10W-3Ta-1.4Hf
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2018:  finally completed multi-pump 300 bar autoclave
Clearly see an effect of impurities

Research grade (RG) CO2:  ≤ 5 ppm H2O and ≤ 5 ppm O2

Goal: 1%O2+0.25%H2O
(industry suggestion)
Not easy to control at 300 bar
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First time:  impurities caused a higher mass gain

RG CO2 + 1%O2 + 0.25% H2O

Only 4000 h completed
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300 bar effect
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Fe-based alloys:
strongest effect
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SEM/EDS: Fe/Ni-rich oxide forming with impurities

Additional characterization in progress…
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Summary:  impurity and pressure effects
• Want to study impurities in sCO2 for direct-fired concept at 750°C

– Comparison of industrial and research grade CO2 at 1 and 300 bar
• 2018 sCO2 symposium paper

– Effect of H2O and 0.1%SO2 at 1 and 25 bar
• 2018 NACE Corrosion paper

• 300 bar sCO2+1%O2+0.25%H2O
– Increased mass gains observed for most alloys
– Higher Fe/Ni incorporated into scale

• Current hypotheses
– Higher P = denser, more protective scale

• More characterization of thin scales required
– SO2 suppresses C & OH effects (Young & Quadakkers): can we take 

advantage?
• Future work at lower temperatures and more Fe-based alloys
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Backup slides
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In-situ coating characterization using PLPS through YSZ
5 cycles at 1100 °C 100 cycles at 1100 °C

100 cycles at 1150 °C300 cycles at 1100 °C

a

dc

b

200 µm

C
om

pr
es

si
ve

St
re

ss
 (G

Pa
)

1-h cycles in ”wet” air (10%H2O)

PLPS: photo-stimulated luminescence piezospectroscopy 
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PLPS results:  very weak signal through 300µm top coating
Similar residual stress in alumina 
scale on both bond coatings

Higher residual stress in flat disk 
specimen compared to rods
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2015-2018: created a baseline in IG sCO2 and CO2

Industrial grade (IG) CO2:  18±16 ppm H2O and ≤ 32 ppm O2

Lines: median values   Box: 25-75%  Whiskers: min./max.
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First 300 bar impurity data obtained
New rig completed first cycle in February 2018

Second cycle completed March 27

Goal: 1%O2+0.25%H2O
(industry suggestion)
Not easy to control at 300 bar Average of 3 specimens in first experiment

No plans to add SO2 to autoclave
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800°C light microscopy: 
strong variations 
observed for 304H

+10%H2O

+10%H2O
+0.1%SO2

Almost
Protective!

RG CO2

304H 230 282 247

304H
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800°C Total Reaction (including internal oxidation):  
reduced in 25 bar except with 0.1%SO2

0.1%SO2 1 bar:  inhibited negative CO2/H2O effect, especially for 304H
Similar result for Young (CO2+H2O) and Quadakkers (H2O) on Fe-Cr
Like SO2 poisoning of metal dusting

0.1%SO2 25 bar:  sulfidation attack with 25X higher pS2
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Eddystone (1960):  when coal-fired boiler progress stopped

Source: J. Henry (2007) Mater. High Temp. 
Eddystone (1960):  613°C/34.5 MPa (1135°F, 5000 psi)
Turk (USC, 2013): 599°/607°C SH/RH, 25.3MPa (1110/1125°F, 3400 psi)
A-USC:  760°C/34.5 MPa (1400°F/5000 psi)

AEP’s John W. Turk Plant 
(Arkansas, US) 2013
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Many variables can be considered

• Temperature
– Cr2O3 better C barrier at higher T (?)
– Steels more T limited than in steam

• Pressure
– No strong effect of increasing P

• Thermal cycling
– Stainless steel attacked at 700°-

750°C

• Oxygen
– ORNL & UW different results

• H2O
– Negative, especially for 

steels

• CO
– UW 1%CO results 

• SO2
– Complicated…

😡😡

😐😐

😐😐

🤔🤔
😕😕

😠😠
😜😜
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Indirect- vs. direct-fired sCO2 systems (i.e. closed 
vs. open)

Closed cycle:
“pure” CO2 100-300 bar

Open cycle:
sCO2 + impurities (O2,H2O…)

DOE SunShot funding DOE Fossil Energy funding
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Thermodynamics:  Oxygen levels similar in steam/CO2
Concern about high C activity at m-o interface

From Young et al. 2011
Also Fujii and Muessner, 1967

Factsage calculations
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AGR gas composition is highly carburizing, unlike sCO2

43 bar, CO2 +1%CO-0.03%H2O-0.03%CH4-0.01%H2

Similar pO2 in steam and CO2

Direct-fired gas:  CO2-1%O2-0.25%H2O
AGR: Advanced Gas-cooled Reactor
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500h at 800°C:  1 bar, 0.1%SO2 reduced internal oxidation
at 25 bar, 0.1%SO2 resulted in more attack

Similar results for SO2 reported by Young (UNSW) and Quadakkers (Jülich)
Hypothesis that S inhibits absorption of C species 
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