Storage of CO₂ in Multi-phase Systems Containing Brine and Hydrocarbons

Project Number: LANL FE-890-18-FY19

Rajesh Pawar (PI) Bailian Chen Los Alamos National Laboratory

U.S. Department of Energy National Energy Technology Laboratory Addressing the Nation's Energy Needs Through Technology Innovation – 2019 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting August 26-30, 2019

LA-UR-19-28899

CO₂ Storage in Residual Oil Zones

- Residual Oil Zones (ROZs) are defined as those zones where oil is swept over geologic time period (natural flush) and exists at residual saturation
 - Brownfield: ROZ underlies a Main Pay Zone (MPZ)
 - ➢ Greenfield: no Main Pay Zone above ROZ
- ROZs are being increasingly exploited using CO₂-EOR
- ROZs are increasingly being studied as potential CO₂ storage option
 - Large uncertainties in parameters and mechanisms related to CO₂ storage in ROZ

Residual Oil Zone Fairway Mapping with Superimposed Major Permian and Pennsylvanian Oilfields and Showing the First Pure ROZ Greenfield ROZ CO₂Project

Project Objectives

- Develop quantitative, empirical relationships for predicting storage efficiencies in greenfield ROZs.
 - Develop empirical models for quantifying: CO₂ storage capacity, oil recovery potential, CO₂ fate
 - > Assess CO_2 storage capacity and associated oil recovery for different ROZ fields
 - Identify key characteristics
- Characterize multi-phase fluid processes in ROZs.

Approach

- Empirical models & key characteristics:
 - Application of reduced order modeling to develop empirical models
 - Models for CO₂ storage capacity, oil recovery, CO₂ fractionation in oil/gas/water phases
 - Compositional reservoir simulations of CO₂ injection using model for a ROZ field in Permian Basin
 - Importance analysis to identify key characteristics
- Characterization of mechanisms:
 - Core-flooding laboratory experiments with limestone cores simulating ROZ conditions

Technical Status

- Pre-FY19:
 - Developed empirical models, demonstrated applicability using Permian basin field data (Chen & Pawar, Energy, 2019)
 - Identified key uncertain parameters
- FY19:
 - Extended applicability of empirical models: application to Illinois basin
 - Continued work on effect of geologic/operational parameters: permeability heterogeneity, well completions, injection rate, well patterns
 - Assessed optimal management of ROZ under various scenarios
 - Developed laboratory experimental approach

Extension of empirical models

- Prior models developed for deeper fields (~4000 feet): Permian basin
- Rebuilt the models with depth range extended to shallower fields (~2000 feet): Illinois basin
- Applied empirical models to the Kenner West field in Illinois

Field name	Thickness (ft)	Depth (ft)	Perm. (mD)	Sor	Injection rate (MM scf/day)	Prod BHP (psi)	Cumulative oil production (MM STB)	Cumulative CO ₂ storage (MM Tons)
Kenner West	40	2600	106	0.25	5	400	4.99	0.401
						600	2.96	.554
						800	1.6	.706

Effect of Permeability Heterogeneity

Increased heterogeneity leads to early CO₂ breakthrough, lesser sweep, lower retention and recovery

Effect of Permeability Heterogeneity

CO₂ saturation distribution at the end of injection

Effect of Well Patterns

Fewer wells reduced long-term leakage risk

Effect of Well Completions

- Single five spot well pattern
- Different completion combinations:
 - Injectors & Producer fully completed
 - > Injectors bottom half completed, producer fully completed
 - Injectors fully completed, producer top half completed
 - > Injectors bottom half completed, producer top half completed
- Homogeneous permeability 50 mD

Well completions affect CO₂ storage but not necessarily oil production

Optimal Reservoir Management Approach

- Single five-spot well pattern
- 6 reservoir layers with different permeabilities:
 - ▹ Top 2 layers: 50 mD
 - Middle 2 layers: 10 mD
 - Bottom 2 layers: 100 mD
- Joint optimization of well completions and well controls (producer BHP & CO₂ injection rate)
- Compare Net Present Value (NPV), CO₂ storage, oil recovery:
 - NPV computed as combined revenue from CO₂ credits plus oil recovery minus injected CO₂ costs

Comparing Different Optimization Objectives Optimize NPV v/s Maximize CO₂ storage v/s Maximize oil recovery

- Both, maximization of NPV and maximization of oil recovery objectives result in higher NPV than maximization of CO₂ storage objective
- Maximization of CO_2 storage objective results in ~20% higher storage
- Optimal completion varies with desired objective

Core-flooding Experiments

- <u>Goal:</u> Characterize multi-phase fluid flow mechanisms in ROZs
- <u>Approach</u>: Simulate CO₂ injection in a residual oil zone using core-flooding experiments
- <u>Challenge</u>: Create residual oil saturation conditions prior to CO₂ flood
- <u>Proposed experimental protocol:</u>
 - Soak rock cores with oil
 - Spin the cores in a centrifuge (take the core to irreducible oil saturations)
 - Flood the cores with water
 - Use careful mass balance to determine the residual oil saturation
- CO₂ flooding experiments at pressures and temperatures typical to residual oil zone containing fields

Accomplishments to Date

- Extended application range of empirical relationships: application to Illinois basin
- Assessed effects of uncertain parameters/operational conditions
- Studied effectiveness of reservoir management optimization
- Developed a laboratory experimental approach to characterize multiphase mechanisms
- Peer-reviewed publications:
 - Bailian Chen and Rajesh J. Pawar, 2019. Capacity assessment and co-optimization of CO₂ storage and enhanced oil recovery in residual oil zones. *Journal of Petroleum Science* and Engineering,.
 - Bailian Chen and Rajesh J. Pawar, 2019. Characterization of CO₂ storage and enhanced oil recovery in residual oil zones. *Energy*, 183: 291-304.

Lessons Learned

- In spite of increased commercial CO₂-EOR operations in ROZs, critical understanding of CO₂ storage & oil production mechanisms as well as long-term CO₂ fate and risks needs to be further developed
 Lack of appropriate data
 - ✤ Large uncertainty
- Proper experimental protocol needed to simulate multi-phase fluid processes in ROZ in laboratory experiments
- Focused field-specific studies needed to improve predictions & predictive capabilities

Synergy Opportunities

- Field data for applying/validating empirical models
- Laboratory characterization comparison with field observations

Project Summary

- Key Findings (FY19):
 - Increased permeability heterogeneity significantly reduces CO₂ retention
 - Larger well spacing leads to higher CO₂ retention and oil recovery: reduced potential for leakage
 - > CO₂ retention in ROZ can be significantly increased using optimization of operations
- Next Steps:
 - > Extend empirical model application to ROZs from other basins in US
 - Complete experimental characterization
 - Make empirical relationships available to wider community (through EDX)

Appendix

These slides will not be discussed during the presentation, but are mandatory.

Benefit to the Program

- Program goals being addressed:
 - Support industry's ability to predict CO_2 storage capacity in geologic formations with $\pm 30\%$.
- Project benefit:
 - This project is focused on developing the science basis to characterize CO_2 storage potential in Residual Oil Zones (ROZs). The objective is to help develop a methodology to estimate CO_2 storage capacity, potential oil recovery and long-term fate of CO_2 that is applicable to a wide range of geologic and operational conditions. This will help CO_2 storage program goal of supporting industry's ability to predict CO_2 storage capacity.

Project Overview Goals and Objectives

- Characterize CO₂ storage potential:
 - Primarily, Greenfield ROZ
 - > Added benefits: e.g. oil recovery potential
 - ▹ Long-term CO₂ fate
 - Assess key uncertainties and data needs
 - Develop empirical relationships to assess CO₂ storage and oil recovery potential applicable to wide range of geologic characteristics

Organization Chart

- Rajesh Pawar, PI
- Bailian Chen, Post-doc
- Rachel Atencio, LANL Program Manager

Gantt Chart

 Preliminary estimates of CO₂ storage potential in representative ROZs across US with associated uncertainties.

- 2. Empirical model to estimate CO₂ storage and utilization potential in ROZs.
- 3. Re-assessment of ROZ potential in conjunction with CO₂ storage.
- 4. Strategy to explore uncertain parameters in ROZ fields through core scale experiments.
- 5. Empirical models for applications to estimate CO₂ storage capacity, long-term fate and oil recovery potential from ROZs including identification of potentially impactful uncertain parameters.
- 6. Application of empirical models to fields with ROZs.
- 7. Initial Experiments.
- 8. Update empirical models based on experimental results.

9. Application of updated empirical models to ROZ fields through synergistic collaborations. Public dissemination of empirical models to CCUS stakeholders.

Bibliography

- Bailian Chen and Rajesh J. Pawar, 2019. Capacity assessment and co-optimization of CO₂ storage and enhanced oil recovery in residual oil zones. *Journal of Petroleum Science and Engineering*.
- Bailian Chen and Rajesh J. Pawar, 2019. Characterization of CO₂ storage and enhanced oil recovery in residual oil zones. *Energy*, 183: 291-304.