

Rotating Detonation Rocket Engines (RDRE)

DOE UTSR Pressure Gain Combustion Panel

Eric Paulson, RDRE Deputy Program Manager

AFRL/RQRC, 30 October 2018

RDRE Team

- Bill Hargus: 6.2 RDRE Program Lead
 - william.hargus@us.af.mil
- Alex Schumaker: 6.1 RDRE Physics Lead
 - <u>stephen.schumaker.1@us.af.mil</u>
- Eric Paulson: System Engineering
 - eric.paulson.1@us.af.mil
- John Bennewitz: Researcher
 - john.bennewitz.ctr@us.af.mil

- Chris Lietz: High Fidelity Modeling
 - christopher.lietz.ctr@us.af.mil
- Blaine Bigler: Engineer
 - blaine.bigler.ctr@us.af.mil
- Randon Kimura: Engineer
 - <u>randon.kimura.ctr@us.af.mil</u>

Special Thanks to HyPerComp Inc., Yogin Desai & Ramakanth Munipall, for their work on 3D simulations

RDRE Program Scope

- Objectives:
 - Advance understanding & demonstrate advantage of RDREs for Air Force missions (boost engines, precombustion devices, & spacecraft propulsion)
 - Focus RDRE propulsion development into a systematic, national approach
- Areas being addressed by joint Basic/Applied Research effort:
 - Thermodynamic cycle analysis: Ideal improvement
 - System analysis: Air Force system improvement
 - Injection & loss mechanisms: Physics understanding to allow for functional devices
 - **Detonation Physics:** *Demonstrate for practical in-space propellants*
 - Technical gap closure: Heat transfer, scaling, nozzle coupling, etc.
 - Lab scale demonstration: Show that benefits can be achieved for lab-scale devices
 - Modeling & Diagnostic Development: Accurate simulations verified by diagnostics
- Approach: Layered experiments tied to multi-fidelity modeling and simulation

Overview of Past Year

- Over 500 plus firings on a CH4-O2 RDRE
 - 6 injector configurations
 - Demonstrated broad operability
- Developed robust image processing toolbox to understand wave dynamics
- Developed modeling & simulation capability from 1D to full 3D LES
 - Demonstrated ability to simulate entire engine from propellant plenums through nozzle expansion
- Designed/built linear detonation rig experiment to investigate injector dynamics (November testing)
- Completed preliminary engine trade study for in-space application
- Ideal thermodynamic cycle analysis for rocket applications

RDRE Specifications

Specifications

- 3" (73.5 mm) annulus with a 0.2" (5 mm) gap
- 3" (73.5 mm) long annular channel
- Propellants: gas-gas, CH₄/GO₂
- <u>Pre-detonator</u>: CH₄/GO₂

View of RDRE (Smith and Stanley, 2016)

Measurements

- Thrust, Isp
- Mass flow (fuel/ox.)
- CTAP chamber pressure (3 axial locations)
- Plenum pressures (fuel/ox.)
- 200 kfps visible imaging (direct into annulus)

Schematic View

RDRE Operation

CH4-GOX φ = 1.1, m_{tot} = 0.94 lbm/s: Test 210

Example Test Run

- Typical tests consisted of 1.25 s run times
- Reported measurement are from the last 100 ms of the test (bounded by the red lines)

Test Matrix

- Performed the following two flow conditions studies:
 - Equivalence Ratio Sensitivity: $\phi = 0.30 2.5$, for $\dot{m}_{tot} = 0.58$ lbm/s (0.26 kg/s)
 - Total Mass Flow Sensitivity: $\dot{m}_{tot} = 0.20 1.0$ lbm/s (0.09-0.45 kg/s), for $\phi = 1.1$
 - Annulus Mass Flux: 0.1-0.5 lbm/(s-in²) (80-400 kg/(s-m²))

AFRL

High-Speed Image Processing Technique

Detonation Surface

Det. Surface (8 Waves CW): Interval 14, Test 86

- Wave motion is clear in the clockwise (CW) direction.
- Slope of detonation fronts are directly proportional to wave speed.
- Regions of higher intensity are captured (~270°).

Example 2-D FFT of Det. Surface

Counter-Propagating Mode Analysis

<u>Flow Condition</u>: $\phi = 1.1$, $m_{tot} = 0.2$ lbm/s Injector: 2.5A

- Opposing wave behavior existed with primarily 5 CW dominant mode with a 4 CCW counter-propagating component.
- Intensity of the counter-propagating component is 83% of the dominant.

Operational Freq., $f_{det.}$ (kHz)

10

Number of Waves, *m*

8

6

4

2

0

-2 -4 -6

-8

-10

Max. Peak Characteristics

Dom. Num. Waves: m = 5 **Frequency**: $f_{det.} = 22.0$ kHz **CP Num. Waves**: m = -4**Frequency**: $f_{det.} = 17.6$ kHz

Modeling & Simulation

- Extremely difficult to make quantitative measurements in RDREs
- Key to understanding underlying physics is performing high fidelity simulations in concert with validation experiments
- Exploratory physics studies
 - In support of detonation physics
 - OD,1D & 2D detonations through premixed gas
- Thermodynamic cycle analysis
 - In support of systems analysis
 - Unwrapped (2D-planar) RDRE
- Injector response
 - In support of injector design
 - Linear injector array
- Full engine dynamics
 - In support of engine design
 - Full 3D axisymmetric configuration
 - Nozzle Effects

Engine Sector 3D Simulation

- 9 Injector sector (1 wave)
- ṁ=0.61 lbm/s, Φ=1.77
- P_{CTap1}
 - Exp: 56.5 psi
 - Sim: 64.2 psi
- Wave Speed
 - Exp: 1132 m/sec
 - Sim: 1580 m/sec
- Isocontours of Pressure
 - White: 7 atm
 - Black: 10 atm
- Temperature Scale
 - 300K to 3600K
- CJ Proprieties
 - T_{det}=3606 K
 - P_{det}=66 atm
 - V_{CJ}=2653 m/s

3D Centerline Values

Full 3D Simulation

- Code: AHFM (VISP Version)
- Chemistry: Modified Westbrook & Dryer
- Domain: Plenums through expansion
- Grid Size: 78 Million
- Cores: 15,048
- Sim Time: 1.28 m-sec
- CPU Hours: 722K

- Test 104
- m=0.58 lbm/s, Φ=1.15
- Experiment vs Simulation:
 - Waves: 9 vs 7
 - P_{CTap1}: 53.9 vs 59.4 psi
 - Speed: 1047 vs 1593.2 m/s
 - Freq: 42.2 vs 50 kHz

Counter-Propagating Mode Analysis

• Past year key takeaways:

- Experiments have demonstrated broad operability for gas-gas RDREs
- LES simulations of full engine are feasibly, relatively affordable and have the potential to provide critical insight into mixing, key detonation features, and loss mechanisms
- Detonations obtained to date vary significantly from ideal homogenous CJ detonations
- Wave speed deficit relative to CJ tied to inhomogeneous mixing field and less then full heat release coupling with the detonation

• Future:

- Investigate how detonation structure affects engine efficiency through closely coupled experimentation and simulations
- Improved injection methods (low loss & improved mixedness) & loss mechanisms via 2nd generation hardware
- Increased chamber pressures
- Increased instrumentation and diagnostics

Questions?

Typical 2D Simulation

- CH4-O2, Φ=1, 1atm backpressure
- 2D premixed with high pressure shutoff inflow
- Code: GEMS
- Chemistry: FFCM-1 reduced for these conditions
- Grid Points: 1.4 million (0.2mm per cell)

Injector Area Study

- Detonation achieved from 0.30 to 2.50 equivalence ratio and down to $m_{tot} = 0.2$ lbm/s (0.09 kg/s).
- Peak performance occurred at $\varphi = 1.1$ for all injector geometries, where $I_s = 150$ s.
- No appreciable change in performance observed for the various injector geometries.

Injector Area Study: Wave Modes

