In-Situ Groundwater Monitoring

UNDERSTAND NATURAL BACKGROUND VARIABILITY

Continuous CO₂ Monitoring Devices

PA Karst Springs (Natural Analog)

• Determine sensitivities of techniques in real world conditions

In-Situ Geochemical Monitoring

- Task 22: Direct CO₂ Sensing in Groundwater
 - deliver a inexpensive, continuous, downhole NDIR, telemetry-based sensing method for the real-time detection of dissolved CO₂ concentrations in groundwater that are indicative of leaks from geological storage sites.
- Task 23: Distributed Fiber Optic Based CO₂ Sensors for Carbon Storage Applications
 - deliver a viable CO_2 sensing technology, that can monitor CO_2 in geological formations relevant for CCS applications. Demonstrate CO_2 sensor with a sensitive (< 1 percent) and selective/stable response in the presence of water
- Task 24: Laser Induced Breakdown Spectroscopy (LIBS)
 - deliver a LIBS flow through apparatus capable of measurements of subsurface fluids in contact with real and manmade materials under in situ conditions. This work will deliver a laboratory based experimental apparatus that can withstand elevated temperature and pressure which can be used alongside the field deployable LIBS instrument that is currently being tested 2

Challenges to Current Practices

- Laboratory-based analyses can be time consuming, have significant lag-time between sampling and analysis, and may be impractical for real-time monitoring of leaks
- Even field deployments of existing sensing commercial technologies require advances in packaging and methodology
- This work improves on the current practices:
 - Advancing the science-base for potential novel in-situ analysis techniques Water impermeable membrane system with No leak & High gas permeance

Geochemical Monitoring: Direct Sensing: CO₂ in Shallow GW

• Non-Dispersive Infrared (NDIR)

- Adapted from atmospheric sensors (Vaisala)
- < 1 mg/L lower limit
- NETL-adapted to sample pumped water
- Sensor modified for field deployment
- Commercial marine sensor being tested

PI - Edenborn⁴

Geochemical Monitoring: Field Testing and Validation

Decatur IL ADM Plant, 2015-16

Brackenridge Field Site, Austin, TX 2016-2017 Central PA kars springs, 2017

Geochemical Monitoring:

Nanomaterial Enabled Fiber Optic Chemical Sensors

NETL RIC Optical Fiber Sensor Efforts are Targeted at Distributed Chemical Sensing for Environmental Monitoring

Leverage In-House Capabilities in *Functional Materials*, *Optical Sensing* and *Geochemistry*

Evanescent Field Optical fiber Optical fiber

Nanomaterial Enabled Chemical Sensing

Compatible with Distributed Interrogation

- Engineered nanomaterials for chemical sensing parameters of interest
- Versatile and can be applied to any environmental parameters of interest
- Distributed interrogation permits "mapping" along the length of the fiber
- Examples: pH, CO₂, and CH₄
- Current project focuses directly on CO₂

Products in 2018: 2 patents awarded, 2 peer-reviewed manuscripts published

PI - Ohodnicki

An emphasis is being placed on metal-organic framework materials but recent efforts are also considering polymers as well.

Highly selective, sensitive films have been developed and demonstrated for CO_2 sensing in gas phase environments leveraging metal-organic framework materials.

Rapid, selective and room temperature growth of MOF thin films on conductive metal oxide for CO₂ gas sensors

Template

Conductive metal oxide layer

on template

Hydroxy double salt layer on template MOF layer on template Cryst Crowth

Cryst. Growth Des., 2018, 18, 2924-2931.

New growth techniques are being explored and developed for long-length fiber optic sensors compatible with distributed interrogation methods. 10

MOF integrated wave-guide CO₂ gas sensor Water vapor impacts

Without modifications to engineered sensing layers, water vapor has significant impacts on the response.

Air permeable but water impermeable **PTFE sleeve**.

Water vapor impacts are being explored and techniques / learnings from field deployments underway for commercial technologies are being applied. 11

> Test facility at the NETL "field testing" laboratory

A new lab facility has been established to simulate groundwater with varying CO2. 12

in water/Hexane

Surface modification of MOF

in water

 CO_2 sensing results for a modified MOF in the presence of 80% relative humidity

Surface modifications to existing sensing layers are being explored to develop hydrophobic behavior, preliminary results show enhanced CO₂ sensing with water vapor.

Engineered hydrophobic polymers for CO₂ sensing

PTFE sleeves help to mitigate water vapor cross-sensitivity and enable reversible sensing of CO₂
 Modifications to the engineered polymer based films are observed after water vapor exposure
 Sensing materials that selectively absorb CO₂ gas and mitigate water vapor are being developed 14

- Measurement of multicomponent system
 - Chloride Solutions of Ba, Ca, Mg, Mn, Sr
 - Limits of Detection and Quantification vs. Pressure
 - Emission decay vs. pressure vs. element
- Laboratory experiments successfully demonstrate that low-ppm range concentrations of Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺ and Mn²⁺ can be accurately measured in CO₂-laden water at varied pressure conditions by using underwater LIBS.

Metal ions	S	R^2	LOD (ppm)	(ppm)	CO ₂ (bar)
	$0.0019 \pm 2.93 \cdot 10^{\text{-5}}$	0.9993	31.68 ± 0.92	104.53 ± 1.06	10
Mg^{2+}	$0.0023 \pm 3.56 {\cdot} 10^{{\cdot} 5}$	0.9996	31.12 ± 0.78	102.71 ± 2.54	200
	$0.0022 \pm 1.87{}^{\rm \cdot}10{}^{\rm -5}$	0.9998	$\begin{array}{c} 30.83 \pm \\ 1.05 \end{array}$	101.73 ± 3.74	400
	$0.0114 \pm 1.16 \cdotp 10^{-4}$	0.9996	2.48 ± 0.71	8.18 ± 0.20	10
Ca ²⁺	$0.0118 \pm 3.85 {\cdot} 10^{-\!4}$	0.9958	2.45 ± 0.62	8.09 ± 0.09	200
	$0.0111 \pm 2.46{\cdot}10^{\text{-}4}$	0.9980	2.67 ± 0.30	8.81 ± 1.01	400
	$0.0076 \pm 6.83 \!\cdot\! 10^{\text{-5}}$	0.9998	3.34 ± 0.11	11.02±0.97	10
Sr ²⁺	$0.0080 \pm 3.07 {\cdot} 10^{4}$	0.9956	3.04 ± 0.13	10.04 ± 1.34	200
	$0.0080 \pm 1.37 \cdot 10^{-4}$	0.9991	3.38 ± 0.31	11.15± 1.02	400
	$0.0037 \pm 3.53 \cdot 10^{-5}$	0.9997	4.38 ± 0.21	$\begin{array}{c} 14.42 \pm \\ 2.03 \end{array}$	10
Ba ²⁺	$0.0038 \pm 2.13 \cdot 10^{\text{-5}}$	0.9998	4.86 ± 0.12	$\begin{array}{c} 16.05 \pm \\ 1.09 \end{array}$	200
	$0.0036 \pm 5.06 {\cdot} 10^{-5}$	0.9994	3.91 ± 0.45	12.91± 3.23	400
	$0.0050 \pm 7.94 {\cdot} 10^{.5}$	0.9989	$\begin{array}{c} 10.47 \pm \\ 0.13 \end{array}$	$\begin{array}{c} 34.53 \pm \\ 1.05 \end{array}$	10
Mn ²⁺	$0.0062 \pm 1.76 {}^{\cdot}10^{4}$	0.9968	7.42 ± 0.09	$\begin{array}{c} 24.50 \pm \\ 1.00 \end{array}$	200
	0.0064 ± 1.06 · 10 ⁻⁴	0.9989	5.24 ± 0.05	17.27 ± 0.55	400

Goueguel, C.L. et al "Quantitative determination of metal ions in high-pressure CO2-water solutions by underwater laser-induced breakdown spectroscopy" in prep

15 **PI - McIntyre**

LOQ

Miniaturized Probe Development

• Method and Device or Remotely Monitoring An Area Using a low Peak Power Optical Pump, US Patent 8786840 B1

- Fiber delivers pump pulse and returns spectral signature
- Laser can be designed to perform either LIBS or RAMAN excitation
- Laser is 16mm long
- Entire optical setup can be sealed to withstand pressure and temperature
- Laser operation is dictated by selection of optical element parameters and tailoring of input pump pulse

Miniaturized Probe Construction

- Initial prototype constructed around a 30mm optical cage system
- Full operation validated with solids, liquids, and in air
 - Geometry would allow access to 8in pipe
- Second smaller prototype constructed around 16mm optical cage system
 - · Geometry would allow access to 4in pipe
 - Challenges with spark production and data quality

<u>Figure 1</u>: Layout of LIBS sensor head. Pump coupling lenses L1 = 25 mm and L2 = 50 mm, Beam expander L3 = -25 mm and L4 = 75 mm, Aspheric focusing lens L5 = 10 mm, Emission coupling lenses L5 and L6 = 50 mm. DCM = dichroic mirror, M = aluminum mirror, BP = 1064 nm bandpass filter, PD = photodiode.

Challenges Overcome

- Modification of pumping light to activate the laser
 - Increased size of pumped volume inside the active material
 - Improvement of output beam quality (M²~1.04)
- Modification of output beam size with beam expander
 - Initial long spark production shielded light used for analysis
 - Initial long spark was inconsistent due to extended intensity distribution
- New compact spark due to improved intensity distribution
 - Reduced light shielding and more light available for analysis
 - Perfect consistency in location and time
 - Improved SNR and lower LOD

Data Collection and Validation

- Calcium, Strontium, Potassium measurement in solution
 - LOD in ppb range (below)
- Europium and Ytterbium measurement in solution
 - LOD 1-2 ppm range
- Europium and Ytterbium measurement in solid form
 - LOD 10-40 ppm (dependent on emission line used)

Element LOD^A LOD (literature) Line (nm) (ppm) (ppm) 0.047^C Calcium 422.7 0.10 0 94^{B,†} 0.13^F 393.4* 0.6^F Strontium 0.04 2.89^{B,†} 460.7 421.5* 0.34^{D,#} 407.8 0.025^G Potassium 766.6 0.009 0.03^{B,†} 1.2^E 0.069 769.9

A – This study, **B** – Goueguel et. al. 2015 [21], **C** – Pearman et. al. 2003 [22], **D** – Fichet et. al. 2006 [23], **E** – Cremers et. al. 1984 [20], **F** –Knoop et. al. 1996 [24], **G** – Popov et. al. 2016 [25], * - Lines showed self-absorption over the concentration ranges used in this study, **†** - NaCl solution matrix, **#** - LIP on liquid surface

Figure 1: Emission spectra and calibration curves for the: A - Calcium (422.7 nm line), B - Strontium (460.7 nm line), and C - Potassium (766.6 and 769.9 nm lines). The intensities for the calibration curves are the integrated intensities of the emission lines. Cation concentration for the emission spectra are 25.1 ppm Ca, 24.1 ppm Sr, 52 ppm K. Note the broad 773 nm peak interfering with the potassium spectrum. This peak is also present in DI water.

Table 1: LODs for Ca, Sr, and K.

Accomplishments to Date

- Field deployment of commercial sensors is clarifying the baseline information and methodologies for new tools under development
- Selective and sensitive CO₂ sensing layers have been developed and demonstrated based on metal-organic frameworks
- Efforts towards field deployment have been initiated including (1) optimizing sensor layers for aqueous applications, (2) packaging and testing under application relevant conditions
- Sensing layer modifications to improve hydrophobicity have improved CO₂ sensing performance, more work on-going
- Initial LIBS probe design tested and validated, and data acquisition has been performed to demonstrate performance
- Weatherproof probe underway and flow through lab is in permitting
- 2 patents pending (LIBS), and 2 patents awarded with several other in preparation (Fiber optic)

Lessons Learned & Synergy Opportunities

Lessons Learned

- Sensing layer stability and response in high water vapor conditions requires additional sensing layer development
- Manipulation of LIBS laser pumping geometry and output to improve performance and consistency

Synergy Opportunities

- Opportunities exist to leverage on-going work in wellbore chemical sensing under SuBTER research efforts within NETL R&IC
- Other geochemistry efforts in the Carbon Storage program can provide insights to application relevant levels / performance metrics
- Optical fiber sensor efforts by other teams on physical parameter monitoring can be used to aid and accelerate field deployments

Synergy Opportunities

- Continued field-based collaboration to test new geochemical monitoring techniques and tools under different CO₂ storage conditions (e.g. FO coated sensors)
 - Natural analogs
 - Controlled release sites
 - EOR field systems

NETL researcher, Hank Edenborn (NETL) at the Brackenridge Field Site (Austin, TX)

Project Summary

- Geochemical monitoring methods/tools are being field validated & baseline signals interpreted
- Information gained from knowledge of CO₂ storage systems is being used to inform development of novel in-situ chemical sensing tools
 - NDIR for CO₂ in shallow systems: natural analog successfully tested, CCS site deployment underway
 - LIBS lab validated, moving towards field prototype
 - MOF coated FO sensor for direct chemical sensing lab validation in progress, field testing in upcoming 2 yrs

Appendix

Benefit to the Program

- Program Goals:
 - Validate/ensure 99% storage permanence.
 - Develop best practice manuals for monitoring, verification, accounting, and assessment; site screening, selection and initial characterization...
- Project benefits:
 - There is a need to be able to quantify leakage of CO_2 to the near surface and identify potential groundwater impacts. This project works to develop a suite of complementary monitoring techniques to identify leakage of CO_2 or brine to USDW's and to quantify impact.

Organization Chart

Technical Portfolio Lead Angela Goodman

NETL Task Technical Coordinator Christina Lopano

Task 22 Direct CO₂ Sensor Schedule

Direct CO₂ Sensing in Groundwater (PI: Hank Edenborn)

	Resear	ch Activities				
	Task 2	2.0 – Direct CO2 Sensing in Gro	undwater		_	
		2018	2019	2020	2021	2022
3				4 <5		
			Milestones		G	io / No-Go
	1.	Deployment of telemetry	y system for groundwater well			
	2.	Presentation summarizin	ng 6 months field data			
	3. Deployment of multiple well telemetry system					
	Presentation summarizing 6 months field data					
	5.	5. Journal publication summarizing total field study				

Key Accomplishments/Deliverables	Value Delivered		
 Present data summarizing hourly carbon dioxide measurements in groundwater well over 6 months (03/2019) Present data summarizing carbon dioxide measurements collected from an array of groundwater wells (03/2019) Publish final results in scientific publication (08/2020) 	 Demonstrate and validate scientific method for real-time monitoring of carbon dioxide concentrations in groundwater at carbon storage field site. 		
	TRL Score Go / No-Go Project Completion Miles		

Task 23 Fiber Optic Sensor Schedule

Distributed Fiber Optic based CO₂ Sensors for Carbon Storage Applications (PI: Paul Ohodnicki)

Research Activities				
Task 23 – Distributed Fiber Optic Based CO2 Sensors for Carbon Storage Applications				
2017	2018	2019	2020	2021
2	$\langle \hat{1} \rangle$		4 5 (♦
Milestones Go / No-Go				

- 1. Establish a test facility and packaging approach for fiber sensor testing at NETL on-site "field testing" laboratory
- 2. Demonstration of a water mitigated vapor cross-sensitivity for a modified MOF or alternative sensor layer
- 3. Benchmarking of fiber optic chemical sensing performance relative to commercial CO2 NDIR sensor
- 4. Development of packaging and proposed procedures for a field validation effort in shallow groundwater
- 5. Successful completion of first shallow-ground water field test
- 6. Successful completion of second shallow-ground water field test
- 7. Plans developed for extension to wellbore and geological sequestration deployment of distributed fiber optic sensing technology including new sensing materials, interrogator, and packaging development.

Impact

Key Accomplishments/Deliverables	Value Delivered
 Paper submitted outlining mitigation of water vapor cross-sensitivity for CO₂ sensing. (3/31/2019) Developed plans for field testing for review and discussion. (12/31/2019) Results of field testing of CO₂ in shallow ground waters and benchmarking with commercially available CO₂ NDIR sensor. (12/31/2020) 	 A fiber optic based CO₂ sensor probe compatible with distributed interrogation to be initially demonstrated in shallow ground waters but ultimately capable of extension to wellbores and embedded sensing in sequestration sites.
	Chart Koy

Milestone

Project

Completion

Go / No-Go

TRL Score

Task 24 LIBS flow Schedule

In-Situ Subsurface Fluid Measurements with Laser Induced Breakdown Spectroscopy (LIBS) (PI: Dustin McIntyre)

TCF Schedule

Bibliography

- P. R. Ohodnicki, C. Wang, T. D. Brown, and B. Kutchko, "METHOD OF EVALUATING PH USING A METALLIC NANOPARTICLE INCORPORATED NANOCOMPOSITE-BASED OPTICAL PH SENSOR", Filed March 2015, S-11213.
- A. X. Wang, C-H Chang, X. Chong, K-J Kim, P. Ohodnicki, "SENSOR DEVICES COMPRISING A METAL-ORGANIC FRAMEWORK MATERIAL AND METHODS OF MAKING AND USING THE SAME," U.S. Patent, No. US15019811.
- K.-J. Kim, P. Lu, J. T. Culp, P. R. Ohodnicki, "Metal–Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform", ACS Sensors, 2018, 3, 386-394.
- Hartzler, D.A., Jain, J.C., and McIntyre D.L., 2018. Development of a subsurface LIBS sensor for in situ groundwater quality monitoring with applications in carbon sequestration, Scientific Reports (Submitted for Review)
- Jain, J.C., McIntyre, D.L., Goueguel, C.L., and Bhatt, C.R., 2017. LIBS sensor for sub-surface CO₂ leak detection in carbon sequestration. Sensors & Transducers, 214, 21-27.
- Hartzler, D.A., Jain, J.C., McIntyre, D.L., 2018. Development of downhole LIBS prototype for CO2 leak detection in geologic carbon storage, SCIX Conference, Atlanta, GA
- Hartzler, D.A., Jain, J.C., McIntyre, D.L., 2018. Prototype LIBS sensor for sub-surface water quality monitoring, AIChE Conference, Pittsburgh, PA
- Jain, J.C., McIntyre, D.L., 2017. Development of laser induced breakdown spectroscopy sensor to assess groundwater quality impacts resulting from subsurface activities. IPEC conference, San Antonio, TX
- McIntyre, D.L., Woodruff, S.D., "Laser induced breakdown spectroscopy (LIBS) probe form simplified light collection and laser operation," US Non-provisional patent application No. 15794345 filed 10/26/2017.
- McIntyre, D.L., Woodruff, S.D., "Composite laser for producing multiple temporal ignition pulses," US Non-provisional patent application No. 16/011,846 filed 6/19/2018.