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In-Situ Geochemical Monitoring

• Task 22:  Direct CO2 Sensing in Groundwater

– deliver a inexpensive, continuous, downhole NDIR, telemetry-based sensing 

method for the real-time detection of dissolved CO2 concentrations in 

groundwater that are indicative of leaks from geological storage sites. 

• Task 23:  Distributed Fiber Optic Based CO2 Sensors for 

Carbon Storage Applications

– deliver a viable CO2 sensing technology, that can monitor CO2 in geological 

formations relevant for CCS applications. Demonstrate CO2 sensor with a 

sensitive (< 1 percent) and selective/stable response in the presence of water

• Task 24: Laser Induced Breakdown Spectroscopy (LIBS)

– deliver a LIBS flow through apparatus capable of measurements of subsurface 

fluids in contact with real and manmade materials under in situ conditions. This 

work will deliver a laboratory based experimental apparatus that can withstand 

elevated temperature and pressure which can be used alongside the field 

deployable LIBS instrument that is currently being tested 2



Challenges to Current Practices

• Laboratory-based analyses can be time consuming, have 

significant lag-time between sampling and analysis, and may 

be impractical for real-time monitoring of leaks

• Even field deployments of existing sensing commercial 

technologies require advances in packaging and methodology

• This work improves on the current practices:

– Advancing the science-base for potential novel in-situ analysis techniques

3



• Non-Dispersive Infrared (NDIR)
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• Adapted from atmospheric sensors (Vaisala)

• < 1 mg/L lower limit

• NETL-adapted to sample pumped water

• Sensor modified for field deployment

• Commercial marine sensor being tested
PI - Edenborn

Geochemical Monitoring: 
Direct Sensing: CO2 in Shallow GW
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Geochemical Monitoring: 
Field Testing and Validation
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Nanomaterial Enabled Chemical Sensing

Nanomaterial Sensing Layer

▪ Engineered nanomaterials for chemical 
sensing parameters of interest

▪ Versatile and can be applied to any 
environmental parameters of interest

▪ Distributed interrogation permits 
“mapping” along the length of the fiber

▪ Examples: pH, CO2, and CH4

▪ Current project focuses directly on CO2

NETL RIC Optical Fiber Sensor Efforts are Targeted at Distributed Chemical 

Sensing for Environmental Monitoring

Leverage In-House Capabilities in Functional Materials, Optical Sensing and Geochemistry

Products in 2018: 2 patents awarded, 2 peer-reviewed manuscripts published
PI - Ohodnicki

Geochemical Monitoring: 
Nanomaterial Enabled Fiber Optic Chemical Sensors

Compatible with Distributed Interrogation



Geochemical Monitoring: 
Nanomaterial Enabled Fiber Optic Chemical Sensors
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An emphasis is being placed on metal-organic framework materials but recent 
efforts are also considering polymers as well.

    CLIIT   exp0

Evanescent Wave Absorption 
Based Sensors

Metal organic framework (MOF)

Polymers



Geochemical Monitoring: 
Nanomaterial Enabled Fiber Optic Chemical Sensors
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➢ MOF integrated wave-guide CO2 gas sensor
Dynamic response to various gases

Highly selective, sensitive films have been developed and demonstrated for CO2
sensing in gas phase environments leveraging metal-organic framework materials.
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➢ MOF integrated wave-guide CO2 gas sensor 

Geochemical Monitoring: 
Nanomaterial Enabled Fiber Optic Chemical Sensors

ACS Sensors, 2018, 3, 386-394.

 Great promise for gas sensing of CO2.

 Excellent selectivity to CO2.

 Very fast (< 1 minute) response times

and excellent reversibility.

 Improved scientific understanding of

sensing mechanism for the optical

fiber platform.
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➢ Rapid, selective and room temperature growth of MOF thin 

films on conductive metal oxide for CO2 gas sensors

Geochemical Monitoring: 
Nanomaterial Enabled Fiber Optic Chemical Sensors

Cryst. Growth  Des., 2018, 18, 2924-2931.

New growth techniques are being explored and developed for long-length fiber 
optic sensors compatible with distributed interrogation methods.
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Geochemical Monitoring: 
Nanomaterial Enabled Fiber Optic Chemical Sensors

➢ MOF integrated wave-guide CO2 gas sensor

➢ Water vapor impacts
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Without modifications to engineered sensing layers, 
water vapor has significant impacts on the response.

Water vapor impacts are being explored and techniques / learnings from field 
deployments underway for commercial technologies are being applied.
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Geochemical Monitoring: 
Nanomaterial Enabled Fiber Optic Chemical Sensors

➢ Test facility at the NETL “field testing” laboratory

The NDIR sensor being field tested can be applied “in-line” to prepare 
for future field testing efforts.

A new lab facility has been established to simulate groundwater with varying CO2.



➢ Surface modification of MOF
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Geochemical Monitoring: 
Nanomaterial Enabled Fiber Optic Chemical Sensors
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Surface modifications to existing sensing layers are being explored to develop 
hydrophobic behavior, preliminary results show enhanced CO2 sensing with water vapor.

CO2 sensing results for a modified MOF in 
the presence of 80% relative humidity

Modification
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Geochemical Monitoring: 
Nanomaterial Enabled Fiber Optic Chemical Sensors

➢ Engineered hydrophobic polymers for CO2 sensing

 PTFE sleeves help to mitigate water vapor cross-sensitivity and enable reversible sensing of  CO2

 Modifications to the engineered polymer based films are observed after water vapor exposure

 Sensing materials that selectively absorb CO2 gas and mitigate water vapor are being developed



Geochemical Monitoring:

Laser Induced Breakdown Spectroscopy (LIBS)
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• Measurement of multicomponent system
– Chloride Solutions of Ba, Ca, Mg, Mn, Sr

– Limits of Detection and Quantification vs. Pressure

– Emission decay vs. pressure vs. element

• Laboratory experiments successfully demonstrate 
that low-ppm range concentrations of Mg2+, Ca2+, 
Sr2+, Ba2+ and Mn2+ can be accurately measured in 
CO2-laden water at varied pressure conditions by 
using underwater LIBS.

Metal ions S R2 LOD
(ppm)

LOQ
(ppm) CO2

(bar)

Mg2+

0.0019 ± 2.93·10-5 0.9993 31.68 ±
0.92

104.53 ±
1.06 10

0.0023 ± 3.56·10-5 0.9996 31.12 ±
0.78

102.71 ±
2.54 200

0.0022 ± 1.87·10-5 0.9998 30.83 ±
1.05

101.73 ±
3.74 400

Ca2+

0.0114 ± 1.16·10-4 0.9996 2.48 ± 0.71
8.18 ± 0.20

10

0.0118 ± 3.85·10-4 0.9958 2.45 ± 0.62
8.09 ± 0.09

200

0.0111 ± 2.46·10-4 0.9980 2.67 ± 0.30
8.81 ± 1.01

400

Sr2+

0.0076 ± 6.83·10-5 0.9998
3.34 ± 0.11 11.02 ±

0.97 10

0.0080 ± 3.07·10-4 0.9956
3.04 ± 0.13 10.04 ±

1.34 200

0.0080 ± 1.37·10-4 0.9991
3.38 ± 0.31 11.15 ±

1.02 400

Ba2+

0.0037 ± 3.53·10-5 0.9997 4.38 ± 0.21
14.42 ±

2.03 10

0.0038 ± 2.13·10-5 0.9998 4.86 ± 0.12
16.05 ±

1.09 200

0.0036 ± 5.06·10-5 0.9994 3.91 ± 0.45
12.91 ±

3.23 400

Mn2+

0.0050 ± 7.94·10-5 0.9989
10.47 ±

0.13
34.53 ±

1.05 10

0.0062 ± 1.76·10-4 0.9968
7.42 ± 0.09 24.50 ±

1.00 200

0.0064 ± 1.06·10-4 0.9989
5.24 ± 0.05 17.27 ±

0.55 400

Goueguel, C.L. et al “Quantitative determination of metal ions in high-pressure CO2-water solutions by 
underwater laser-induced breakdown spectroscopy”  in prep PI - McIntyre



Geochemical Monitoring:

Laser Induced Breakdown Spectroscopy (LIBS)
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Figure 5: Basic design of the monolithic PQSW Nd:YAG Pill laser. The high 
reflector is coated directly onto the Nd2+ doped YAG and the output coupler is 
coated onto the Cr4+ doped YAG. The two YAG crystals are bonded.

• Method and Device or Remotely Monitoring An Area Using 

a low Peak Power Optical Pump, US Patent 8786840 B1

– Fiber delivers pump pulse and returns spectral signature
– Laser can be designed to perform either LIBS or RAMAN excitation
– Laser is 16mm long
– Entire optical setup can be sealed to withstand pressure and temperature
– Laser operation is dictated by selection of optical element parameters and 

tailoring  of input pump pulse

Miniaturized Probe Development



Geochemical Monitoring:

Laser Induced Breakdown Spectroscopy (LIBS)
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Figure 1: Layout of LIBS sensor head. Pump coupling lenses L1 = 25 mm and L2 = 50 mm, 
Beam expander L3 = -25 mm and L4 = 75 mm, Aspheric focusing lens L5 = 10 mm, Emission 
coupling lenses L5 and L6 = 50 mm. DCM = dichroic mirror, M = aluminum mirror, BP = 1064 
nm bandpass filter, PD = photodiode.

.

• Initial prototype constructed around a 30mm optical cage system
• Full operation validated with solids, liquids, and in air

• Geometry would allow access to 8in pipe
• Second smaller prototype constructed around 16mm optical cage system

• Geometry would allow access to 4in pipe
• Challenges with spark production and data quality

Miniaturized Probe Construction



Geochemical Monitoring:

Laser Induced Breakdown Spectroscopy (LIBS)
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• Modification of pumping light to activate the laser
• Increased size of pumped volume inside the active material
• Improvement of output beam quality (M2~1.04)

• Modification of output beam size with beam expander
• Initial long spark production shielded light used for analysis
• Initial long spark was inconsistent due to extended intensity distribution

• New compact spark due to improved intensity distribution
• Reduced light shielding and more light available for analysis
• Perfect consistency in location and time
• Improved SNR and lower LOD

Challenges Overcome



Geochemical Monitoring:

Laser Induced Breakdown Spectroscopy (LIBS)
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Table 1: LODs for Ca, Sr, and K.  

Element Line 
(nm) 

LODA  
(ppm) 

LOD (literature)  
(ppm) 

Calcium 422.7 0.10 0.94B,† 0.047C 0.13F 

 393.4*    0.6F 

Strontium 460.7 0.04 2.89B,†   

 421.5*   0.34D,#  
 407.8*    0.025G 

Potassium 766.6 0.009 0.03B,† 1.2E  
 769.9 0.069    

A – This study, B – Goueguel et. al. 2015 [21], C – Pearman et. al. 2003 [22], D – Fichet et. 
al. 2006 [23], E – Cremers et. al. 1984 [20], F –Knoop et. al. 1996 [24], G – Popov et. al. 2016 
[25], * - Lines showed self-absorption over the concentration ranges used in this study, † - 
NaCl solution matrix, # - LIP on liquid surface  

 

• Calcium, Strontium, Potassium measurement in solution
• LOD in ppb range (below)

• Europium and Ytterbium measurement in solution
• LOD 1-2 ppm range

• Europium and Ytterbium measurement in solid form
• LOD 10-40 ppm (dependent on emission line used)

Data Collection and Validation



Accomplishments to Date

– Field deployment of commercial sensors is clarifying the baseline 

information and methodologies for new tools under development

– Selective and sensitive CO2 sensing layers have been developed and 

demonstrated based on metal-organic frameworks

– Efforts towards field deployment have been initiated including (1) 

optimizing sensor layers for aqueous applications, (2) packaging and 

testing under application relevant conditions

– Sensing layer modifications to improve hydrophobicity have 

improved CO2 sensing performance, more work on-going

– Initial LIBS probe design tested and validated, and data acquisition 

has been performed to demonstrate performance

– Weatherproof probe underway and flow through lab is in permitting

– 2 patents pending (LIBS), and 2 patents awarded with several other 

in preparation (Fiber optic)
20



Lessons Learned & Synergy Opportunities

– Opportunities exist to leverage on-going work in wellbore chemical 

sensing under SuBTER research efforts within NETL R&IC

– Other geochemistry efforts in the Carbon Storage program can 

provide insights to application relevant levels / performance metrics

– Optical fiber sensor efforts by other teams on physical parameter 

monitoring can be used to aid and accelerate field deployments
21

– Sensing layer stability and response in high water vapor conditions 

requires additional sensing layer development

– Manipulation of LIBS laser pumping geometry and output to 

improve performance and consistency

Lessons Learned

Synergy Opportunities



Synergy Opportunities

• Continued field-based collaboration to test new geochemical 

monitoring techniques and tools under different CO2 storage 

conditions (e.g. FO coated sensors)

• Natural analogs

• Controlled release sites

• EOR field systems 

22
NETL researcher, Hank Edenborn (NETL) 
at the Brackenridge Field Site (Austin, TX)



Project Summary
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• Geochemical monitoring methods/tools are being field 

validated & baseline signals interpreted

• Information gained from knowledge of CO2 storage 

systems is being used to inform development of novel 

in-situ chemical sensing tools

• NDIR for CO2 in shallow systems:  natural analog 

successfully tested, CCS site deployment underway

• LIBS – lab validated, moving towards field prototype

• MOF coated FO sensor for direct chemical sensing - lab 

validation in progress, field testing in upcoming 2 yrs



Appendix

24
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Benefit to the Program 
• Program Goals:

– Validate/ensure 99% storage permanence. 

– Develop best practice manuals for monitoring, 

verification, accounting, and assessment; site screening, 

selection and initial characterization…

• Project benefits:

– There is a need to be able to quantify leakage of CO2 to the near surface 

and identify potential groundwater impacts.  This project works to develop 

a suite of complementary monitoring techniques to identify leakage of CO2

or brine to USDW’s and to quantify impact.
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Task 22 Direct CO2 Sensor Schedule
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Task 23 Fiber Optic Sensor Schedule
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Task 24 LIBS flow Schedule
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