Development and Bench-Scale Testing of a Novel Biphasic Solvent-Enabled Absorption Process for Post-Combustion Carbon Capture (DE-FE0031600)

> Presenter: Paul Nielsen Illinois State Geological Survey

Pittsburgh, PA · August 16, 2018

Project Overview Technology Background Scope of Work/Technical Approaches Current Status Plan for Future Scale-Up /Development

Objectives

Advance the development of a transformational biphasic CO₂ absorption technology from lab- to bench-scale

Design, fabricate and test an integrated 40 kWe benchscale capture unit with simulated and actual coal flue gas

Demonstrate the technology progressing toward achieving the DOE's Transformational Capture goals

Project Participants

University of Illinois (Technology Developer) Illinois State Geological Survey

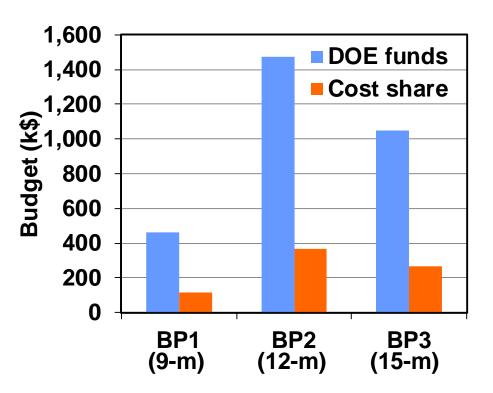
- David Ruhter (MS, Lab Manager)
- Hafiz Salih (PhD, Environmental Engineer)
- Hong Lu (PhD, Chemical Engineer)
- Qing Ye (Post-Doctoral Research Fellow)
- Varenya Mehta (MS, Environmental Engineer)
- Paul Nielsen (PhD, Chemical Engineer)
- Yongqi Lu (PhD, Chemical/Environmental Engineer)

Illinois Sustainable Technology Center

- BK Sharma (PhD, Senior Chemical Engineer)
- Kevin O'Brien (PhD, Director)
- Wei Zheng (PhD, Senior Chemist)

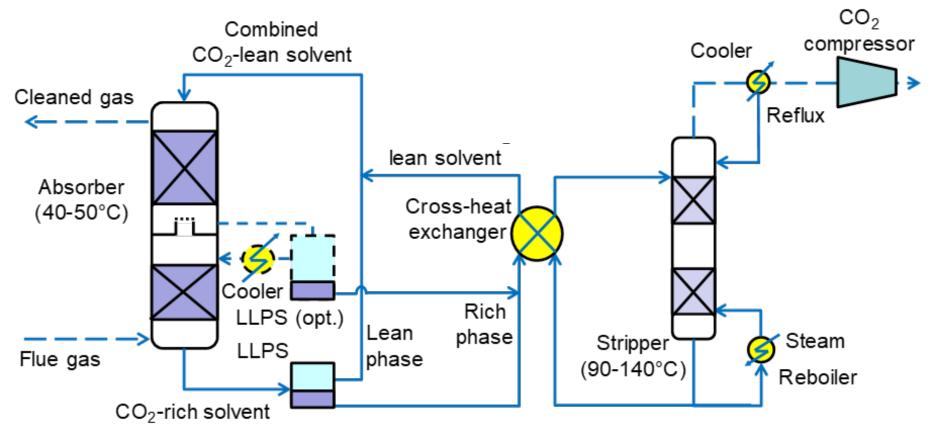
□ <u>Trimeric Corporation</u> (Design and Fabrication, TEA)

- Darshan Sachde (PhD, Senior Chemical Engineer)
- Katherine Dombrowski (Principal Technical Staff)
- Kevin Fisher (VP, P.E., Principal Engineer)
- <u>Ray McKaskle (P.E., Principal Engineer)</u>



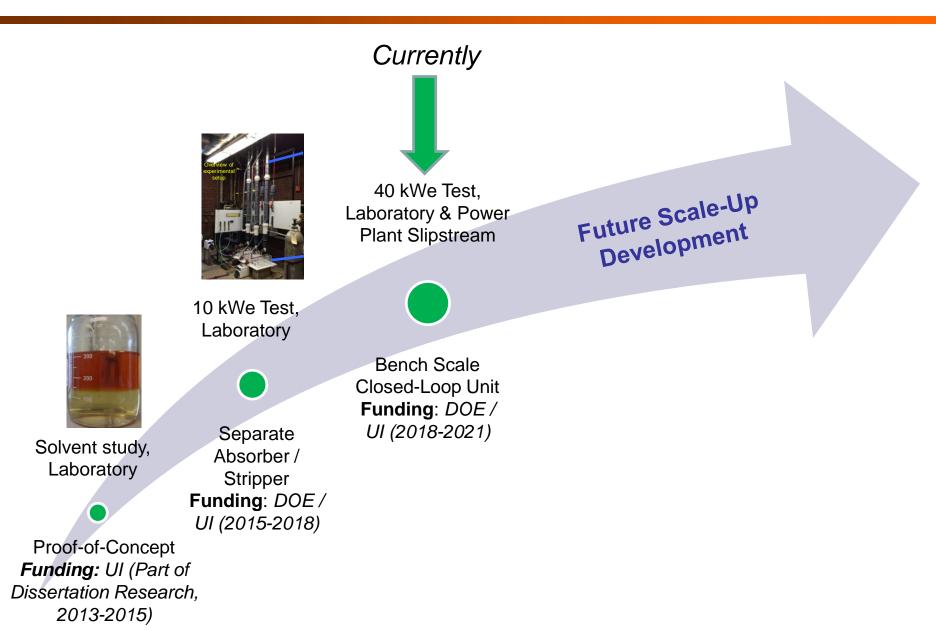
Budget Profile and Duration

Project duration: 36 mon, 3 Budget Periods (4/6/18–4/5/21)
BP1: 9 mon (4/6/18-1/5/19)
BP2: 12 mon (1/6/19-1/5/20)
BP3: 15 mon (1/6/20-4/5/21)


Funding Profile:
DOE funding of \$2,981,779
Cost share (in-kind) of \$750,051 (20.1%)

Project Overview

Technology Background Scope of Work/Technical Approaches Current Status Plan for Future Scale-Up /Development


Biphasic Process (BiCAP)

Water lean Aqueous/Organic amine blend

- \succ CO₂-rich solvent separates into 2 liquid phases
- Reduced solvent flow to regenerator
- Enhanced CO₂ absorption via removal of rich solvent

Progression of Technology Development

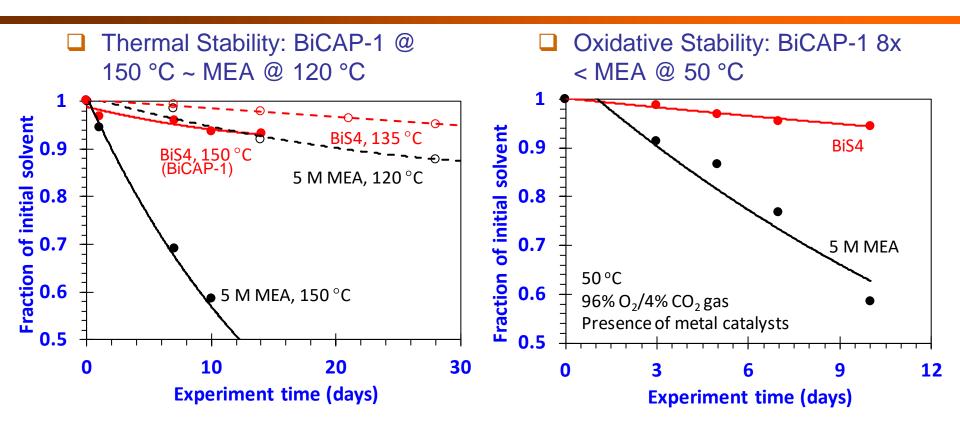

Current Status of Solvent and Process R&D

Solvent Development	Results	Status
~80 solvents screened	2 solvents selected	Completed
VLE	Absorption capacity: similar to 5 m MEA	Completed
Absorption kinetics	Comparable to faster than MEA	Completed
Oxidation and thermal stabilities	Thermal stability at 150°C ~ MEA at 120°C; Oxidation stability ~8 times < MEA	Completed
Viscosity	CO_2 -saturated rich phase solutions < 50 cP	Completed
Phase Separation	\geq 98% of CO ₂ uptake in <50% of solution	Completed
Heat of desorption	Estimated with VLE data	Completed
Corrosion effect	Less corrosion than MEA on CS or SS	Completed
CO_2 absorption	Lab 10 kWe absorption column; Faster rates than MEA demonstrated in testing	Completed
CO ₂ stripping	Lab 10 kWe desorption system; Heat duty 2400 kJ/kg CO_2 for BiCAP-1, 2000 for -2	Near Completion

Lab 10 KW_e Absorption and Desorption Tests Demonstrated Performance of BiCAP

- CO₂ absorption rate 12% faster than 5 m MEA for BiCAP-1
- Demonstrated effectiveness of liquid-liquid phase separation unit

- □ Tested up to 150 °C, 9 bar
- Minimum Reboiler Heat Duty:
 - ➢ BiCAP-1: 2400 kJ/kg CO₂
 - ➢ BiCAP-2: 2000 kJ/kg CO₂

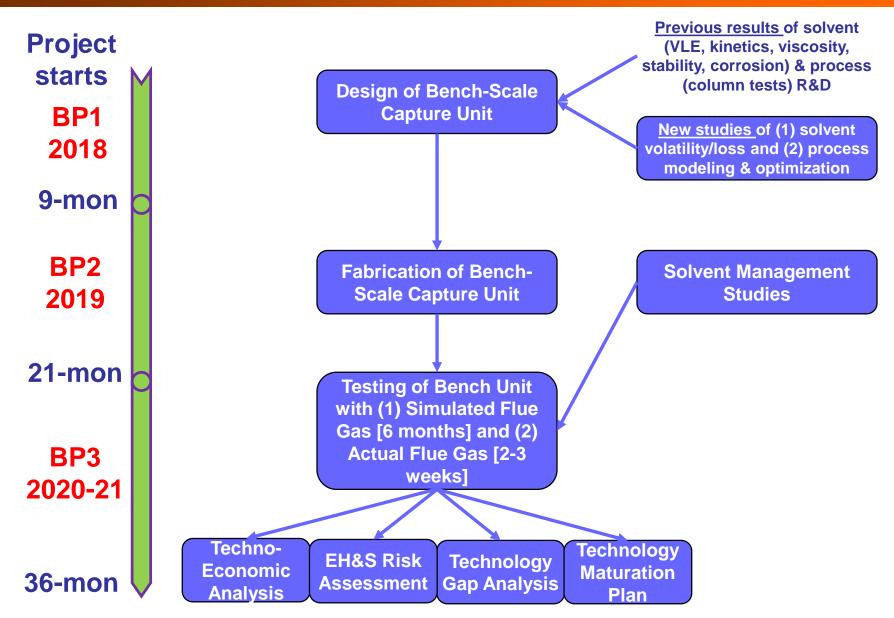

Projected Energy Performance for Net 550 MW_e

	BiCAP*	DOE Case 12 (MEA)	DOE Case B12B (Cansolv)
Net Generating Capacity, MWe	550	550	550
Gross Generating Capacity, MWe	700	802	728
Amount of CO ₂ captured, tonne/hr	478	548	480
Total Steam Derate, MWe	71.1	139	86
Reboiler/Flash Heat Duty, MWth	278	542	331
Thermal to Electric Energy, %	25.6	25.6	25.8
Direct Electrical Derate, MWe	44.8	75.2	51.7
Compression Duty, MWe	31.5	44.9	35.7
Other (Pumps, Fans, etc.), MWe	13.3	30.3	16.0
Total Derate for CO ₂ Capture, MWe	116	214	137
Total parasitic use for entire plant, MWe	150	252	178

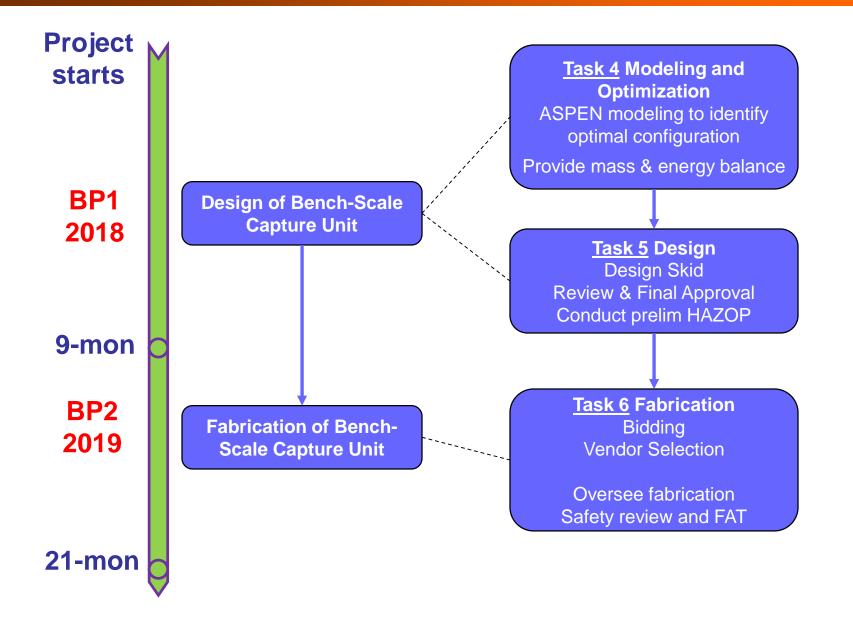
* Updated BiCAP case (Cold rich feed bypass the heat exchanger)

- **Total derate 43% less than MEA**
- □ CAPEX 20% less than MEA

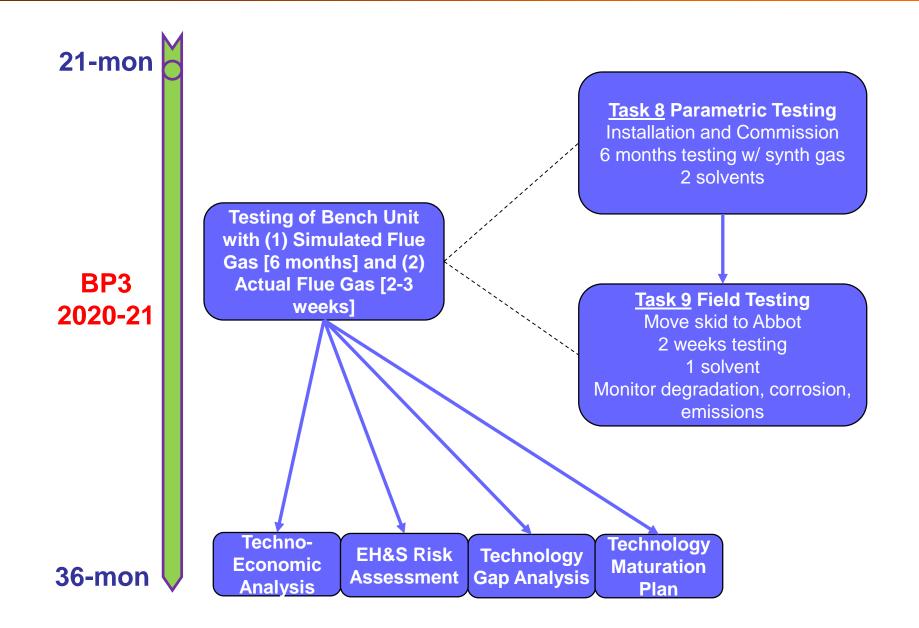
Biphasic Solvents are Stable


Corrosion rate of 2-3 times < MEA for carbon steel, minimal for stainless
 Viscosity <50 cP for CO2-rich phase, <10 cP mixed @ 40 °C

Project Overview Technology Background Scope of Work/Technical Approach Current Status Plan for Future Scale-Up /Development


Schedule and Milestones (36-mon, 4/6/18-4/5/21)

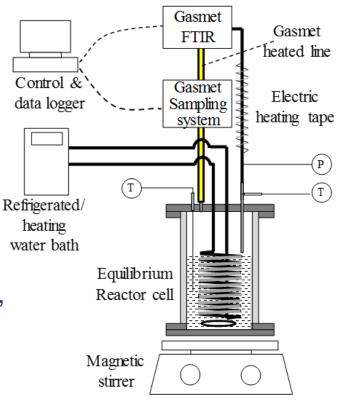
ID	Task Name	Start	Finish	Resource Names	201	8			2	019			20)20			
					Q1 Q2	C S	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4 OND	Q1	_
1	Task 1.0 - Project Management and Planning	4/1/18	3/31/21	UIUC	FMAMJ.	114	SON	DJFN	1 AM	JIAIS	OND	JIFIM	AMJ	JAS	OND	JIFIM	A
2	1.1 - Project Monitoring and Control	4/1/18	3/31/21	UIUC													[
2	1.2- Briefings and Reports	4/1/18	3/31/21	UIUC, Trimeric	<u> </u>				i	1. I	L		I., .	l, 1	ļ, ļ		
4	a - Updated Project Management and Planning	4/30/18	4/30/18	0100, millenc	÷ 4/30/	18					· ·		1				
4 5	b - Project kickoff meeting	6/30/18	6/30/18				18										
6	Task 2.0 - Developing & Implementing a Technology Maturation Plan	4/1/18	3/31/21	UIUC		010	́										1
0	rask 2.0 - Developing & implementing a Technology Maturation Plan	4/1/18	3/31/21	0100	T T												ſ
_																	
7	c - Technology Maturation Plan prepared	6/30/18	6/30/18		•	6/3 /	18										
8	Task 3.0 - Studies of Solvent Volatility and Losses	4/1/18	12/31/18	UIUC				*									
9	3.1 - Solvent Volatility Measurement	4/1/18	9/30/18	UIUC													
10	3.2 - Testing of Solvent Losses in a Laboratory Absorption Column	7/1/18	12/31/18	UIUC													
11	 d - Volatility measurement and preliminary results of water wash performance obtained 	9/30/18	9/30/18				e 9 <i>1</i> 30/	18									
12	Task 4.0 - Modeling & Optimization of Biphasic CO2 Absorption Process	4/1/18	6/30/18	UIUC													
13	4.1 - Process Modeling and Optimization	4/1/18	5/15/18	UIUC				1									
4	4.2 - Bench-Scale Unit Process Simulations	5/16/18	6/30/18	UIUC	*			1									
5	e - Optimal process configuration identified	6/30/18	6/30/18			6/3 /	18			1							
6	Task 5.0 - Design of Bench-Scale Capture Unit	7/1/18	12/31/18	Trimeric													
7	5.1 - Design of Bench-Scale Capture Unit	7/1/18	11/30/18	Trimeric				A									
8	5.2 - Design Review and Approval	12/3/18	12/31/18	Trimeric				-									
19	f- Bench-scale equipment design completed	12/31/18	12/31/18	minorio			- · ·	12/31	/18								
20	Task 6.0 - Fabrication of Bench-Scale Capture Unit	1/1/19	12/31/19	UIUC, Trimeric				<u> </u>									
21	6.1 - Bidding Solicitation and Selection of a Manufacturing Vendor	1/1/19	6/30/19	Trimeric,UIUC								3					
22	6.2 - Fabrication of Bench-Scale Capture Unit	7/1/19	12/31/19	UIUC, Trimeric						÷							
23	g - Bench-scale unit fabricated and factory acceptable test completed	12/31/19	12/31/19	0100, 11111010								12/31/1	9				
20	g - bencirscale unit labilitated and lattery acceptable test completed	12/01/10	12/01/10														
24	Task 7.0 -Solvent Management Studies	1/1/19	12/31/19	UIUC								•					
25	7.1 - Solvent degradation and reclamation study	1/1/19	9/30/19	UIUC													
26	7.2 - CO2 loading correlation and in-situ measurement	7/1/19	12/31/19	UIUC						1							
27	h - Solvent reclamation option identified	9/30/19	9/30/19							· ·	 9/30/19 						
28	Task 8.0 - Parametric Testing of Bench-Scale Unit with a Simulated Flue Gas Stream	1/1/20	9/30/20	UIUC, Trimeric											۴		
29	8.1 - Installation and Commissioning	1/1/20	3/31/20	Trimeric,UIUC								-					
30	8.2 - Parametric Testing of Bench-Scale Unit	4/1/20	9/30/20	UIUC						1			+				
31	i - Bench-scale unit installed on skid	3/31/20	3/31/20					1					3/31/20		1		
32	j - Parametric testing of bench-scale unit completed	9/30/20	9/30/20					1						.	9/30/20		
33	Task 9.0 - Testing of Bench-Scale Capture Unit at a Power Plant	10/1/20	12/31/20	UIUC, Trimeric				1								,	
34	9.1 - Field Test Preparation	10/1/20	11/30/20	UIUC, Trimeric				1							* 1		
35	9.2 - Bench-scale Testing with Actual Flue Gas	12/1/20	12/31/20	UIUC						1							
36	k- Field testing with a slipstream of coal combustion flue gas completed	12/31/20	12/31/20													12/31/2	0
37	Task 10.0 - Techno-Economic Analysis	10/1/20	3/31/21	Trimeric						1				.	لحص		
38	10.1 - Process Analysis and Updating Mass & Energy Balance Calculations	10/1/20	12/31/20	Trimeric													ĺ
39	10.2 - Techno-Economic Analysis	1/1/21	3/31/21	Trimeric													
0	I - Techno-Economic Analysis topical report completed	3/31/21	3/31/21					1							[
11	Task 11.0 - Technology Gap Analysis	1/1/21	3/31/21	UIUC				1							4		ľ
12	m - Technology Gap Analysis topical report completed	3/31/21	3/31/21	0.00				1		1					T		Ι,
+2 13	Task 12.0 - Environmental Health and Safety Risk Assessment	1/1/21	3/31/21	UIUC		Ы				00				00	4		ſ
+3 14	n - Environmental Health & Safety Risk Assessment topical report	3/31/21	3/31/21	0100	B	H	1	1	B	P2			B	P3	l T		3
++	completed	3/31/21	3/31/21					1		1						2	T .


Project Task Flow

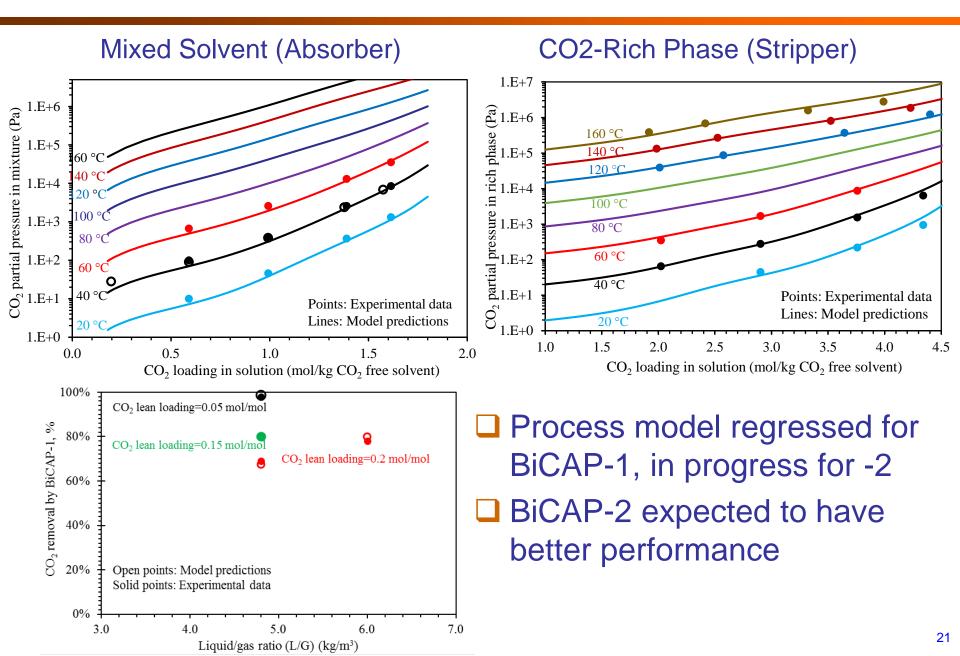
Design and Fabrication (BP1 and BP2)

Operation (BP3)

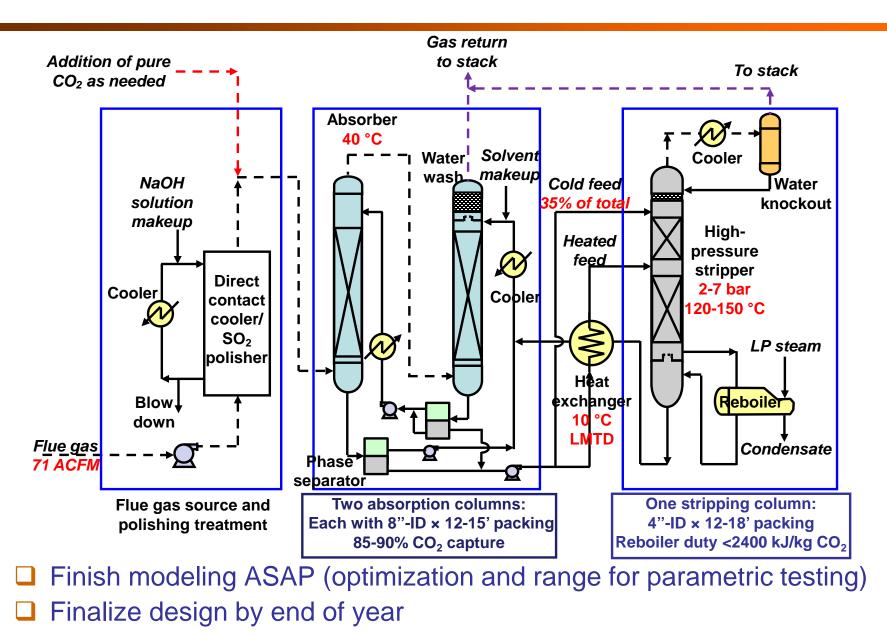
Solvent Management (BP1 and BP2)



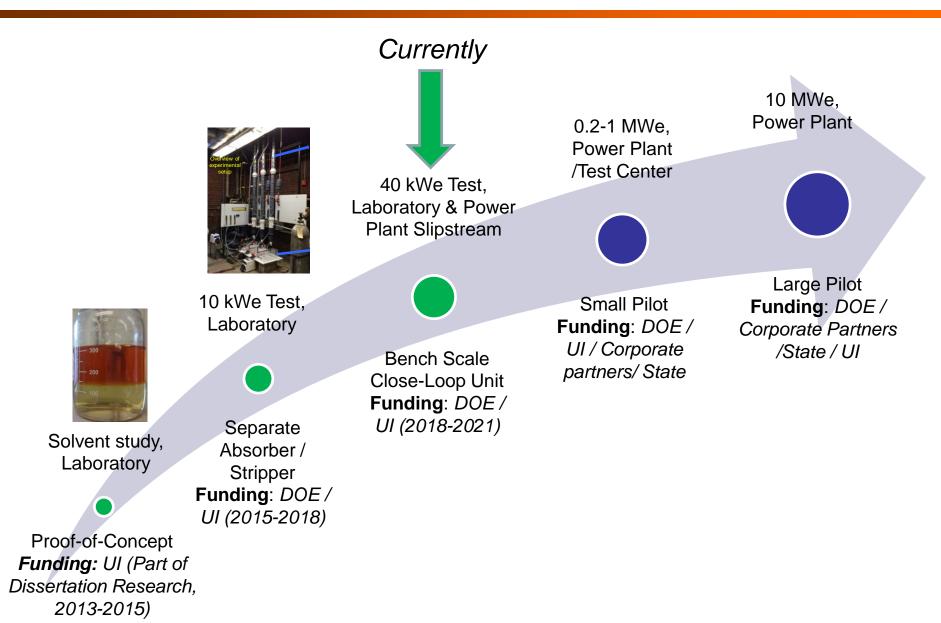
Project Overview Technology Background Scope of Work/Technical Approaches Current Status Plan for Future Scale-Up /Development


Solvent Volatility & Losses

DX-4000 FTIR purchased from GASMET


- Volatility measurements in existing VLE cell in August/September
- Volatile losses and aerosol control to be tested in existing 10 kW lab absorber column
 - Water wash section to be added
 - > 2-3 trays/packings to be tested
 - Total emissions to be measured by FTIR, aerosols collected by membrane filters and analyzed by TOC
 - Purchasing SO₃ aerosol generator

ASPEN Process Modeling



Proposed Skid Flow Diagram

Project Overview Technology Background Scope of Work/Technical Approaches Current Status Plan for Future Scale-Up /Development

Progression of Technology Development

Acknowledgments

Funding Support by USDOE/NETL through Cooperative Agreement No. DE-FE0031600

DOE/NETL Project Manager: Andrew Jones

DOE/NETL Contract Specialist: Bethan Young

Thank you!

Contact Information:

Yongqi Lu (Project PI) Illinois State Geological Survey Tel: 217-244-4985 Email: yongqilu@Illinois.edu