CO₂ Utilization in Unconventional Reservoirs Project Number 70066 Task 2

H. Todd Schaef B. Pete McGrail

Pacific Northwest National Laboratory

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface through Technology Innovation, & Collaboration: Carbon Storage and Oil & Natural Gas Technologies Review Meeting August 13-16, 2018

Presentation Outline

- Program Focus Area and DOE Connections
- Goals and Objectives
- Scope of Work
- Technical Discussion
- Accomplishments to Date
- Project Wrap-up
- Appendix (Organization Chart, Gantt Chart, and Bibliography

Benefit to the Program

- Program goals addressed:
 - Technology development to predict CO₂ storage capacity
 - Demonstrate fate of injected CO₂
- <u>Project benefits statement</u>: This research project conducts modeling and laboratory studies to lower cost and to advance understanding of storing pure CO₂ and mixed gas emissions produced from post- and oxycombustion flue gas in unconventional geologic reservoirs.

Project Overview: Goals and Objectives

- Goal: Development of geologic storage technology with a near zero cost penalty goal – a grand challenge with enormous economic benefits.
- Objective: Employ a multidisciplinary approach for identifying key sequestration opportunities and for pursuing major research needs in:
 - Identifying R&D needs and pursuing R&D on promising low-cost technologies for utilizing CO₂ and CO₂ containing other constituents in depleted shale gas and shale oil reservoirs.
 - phase behavior and fate and transport of supercritical gas mixtures in fractured geologic formations.

Project Overview: Scope of work

Task 2 – Utilization in Unconventional Reservoirs

- 2.1 Laboratory Based Experiments
 - Model mineral systems
 - Supercritical fluids and clay interactions
 - Modification to clay structure tracked as a function of CH_4 - CO_2 - H_2O concentration
 - * Changes to the CO_2 , CH_4 , H_2O chemical environments
 - Perturbations to the CO₂, CH₄ molecules
- 2.2 Data Analysis and Manuscript Preparation
 - \circ Pure CO₂ and CH₄ studies
 - CO₂-CH₄ supercritical fluid mixtures
 - MD simulations to support lab efforts

Clay Interactions with Supercritical Fluids

Enhanced Gas Recovery with CO₂

- Replacing current fracking fluids with CO₂ or modified fluids requires we understand the CH₄/CO₂/surface interactions on a molecular scale
- Focus on expandable clays

Key Findings and Outcomes:

- Swelling by CO₂ depends mostly on strength of interaction between cation and clay basal surfaces
- CH₄ sorbs via passive space filling but does not cause swelling
- Increasing fluid CO₂ concentrations leads to expansion of Na saturated clays to 1W state at lower RH
- Measured water solubility for CH₄-CO₂ mixtures and benchmarked against models

In Situ High Pressure Instrumentation

Cation and Dry CO₂ interactions: What is happening in the clay interlayer?

XRD spectra of Cs, NH_4 , and Na-clay in contact with $scCO_2$

- Structural changes to Cs⁺ and NH₄⁺
- No shift in the Na⁺

¹³C MAS-NMR of CO₂ sorbed to Cs, NH₄, Na-clay

- Resonance for scCO₂ and Na⁺-clay + scCO₂ at ~124 ppm are similar
- Centerbands for Cs⁺ and NH₄⁺-clays have increased fwhh (more restrictive CO₂ environment), double sets of SSB

Cation and Dry CO₂ interactions: What is happening in the clay interlayer?

IR and QCM Measurements

- Asymmetrical CO stretching at 2335 cm⁻¹ changes intensity and shape for Cs and NH₄ clay
- Na-clay similar to bulk scCO₂
- QCM captures external and internal CO₂
- CO₂ concentrations trend with IR

MD Simulations

- Immersion energy increases for Na⁺ clay, from 9.5 to 10.7Å, indicating collapsed state is stable
- Little or no barrier for Cs⁺ and NH₄⁺ clays
- CO₂ induced swelling depends on interaction between clay basal surface and cation

Schaef, HT, N Loganathan, et al, 2017. Tipping Point of Expansion of Layered Aluminosilicates in Weakly Polar solvents: Supercritical CO₂", Applied Materials and Interfaces, 9, 36783-36791.

Interactions of scCH₄ with Clays under Reservoir Conditions

Cation exchanged smectites (Ca²⁺, Pb²⁺, Na⁺, Cs⁺) exposed to variable wet $scCH_4$ give insight into gas/clay interactions.

Pressurized XRD Experiments

- Variable wet scCH₄, 50°C
- No expansion when exposed to dry scCH₄
- Clays expand with increasing RH
- Na-clay ranges from 9.8 Å to 15.0 Å

Cation	Vacuum (10 ⁻³ Torr)	scCH₄ 90 Bar
Na⁺	9.8	9.8
Cs+	11.2	11.1
Pb ²⁺	10.8	11.00
Ca ²⁺	10.6	10.8

Interactions of scCH₄ with Clays under Reservoir Conditions

Pressurized IR data collected from cation exchanged smectites exposed to variable wet scCH₄ highlight gas/clay interactions at reservoir conditions.

- Ca²⁺, Pb²⁺ clays sorb more water than Na⁺, Cs⁺ (Transmission IR) during exposure to scCH₄
- Sorbed CH₄ decreases with increasing RH (ATR-IR) for all clays

Bowers, GM, JS Loring, HT Schaef, et al., 2018. "Interaction of Hydrocarbons with Clays under Reservoir Conditions: In situ Infrared and Nuclear Magnetic Resonance Spectroscopy and X-ray Diffraction for Expandable Clays with Variable Wet Supercritical Methane, ACS Earth and Space Chemistry, 2, 640-652.

Interactions of scCH₄ with Clays under Reservoir Conditions

Pressurized ¹³C MAS NMR of $scCH_4$ in contact with smectite indicated different chemical environments

Bowers, GM, JS Loring, HT Schaef, et al., 2018. "Interaction of Hydrocarbons with Clays under Reservoir Conditions: In situ Infrared and Nuclear Magnetic Resonance Spectroscopy and X-ray Diffraction for Expandable Clays with Variable Wet Supercritical Methane, ACS Earth and Space Chemistry, 2, 640-652.

CO₂/CH₄ Mixtures: Water Solubilities at Saturation

IR Titrations to determine saturation concentrations

Loring JS, DA Bacon, et al., 2017. "Water Solubility at Saturation for CO2–CH4 Mixtures at 323.2 K and 9.000 Mpa", J. Chem. Eng. Data, 2017, 62 (5), pp 1608–1614.

Mixed Gas Systems: CH₄/CO₂ in contact with Clays

Sorbed H₂O (mol/mol Na⁺)

12.0

10.0

8.0

6.0 4.0 3% CO₂ in CH₄ 25% CO₂ in CH₄ 5cCO.

80

Relative Humidity

Clays (Na, Cs, NH₄) exposed to variably hydrated supercritical fluid CO₂-CH₄ mixtures and characterized by IR and XRD.

XRD of clay hydration- dashed, dotted, and solid curves correspond to relative abundance (0W, 1W, and 2W)

- Na-Clay: vacuum and at 50°C, collapsed d₀₀₁ value of 9.69 Å
- Exposure to four supercritical dry fluid CO₂-CH₄ mixtures resulted in no expansion
- Clay expansion starts at progressively lower RH with increasing CO₂ concentrations
- Increasing CO₂ concentrations leads to expansion of Na clay to 1W state at lower RH

ATR-IR sorbed CO_2 as a function of sorbed H_2O

- Sorbed H₂O concentrations increased with RH for all fluid compositions
- 2343 cm⁻¹ attribute to sorbed CO₂ that is rotationally constrained
- Sorbed CO₂ decreases with increasing H₂O
- CO₂ facilitates intercalation of H₂O and swelling at lower RH compared to CH₄

Loring, JS, HT Schaef, et al., 2018. "Synergistic coupling of CO2 and H2O during expansion of clays in super critical fluids", in prep.

Accomplishments to Date

- Published a series of manuscripts demonstrating clay/fluid behavior at reservoir conditions
- Completed experiments relating volume changes to swelling clays in variable hydrated supercritical mixed gas fluids.

Developed strong collaborations

- o Michigan State University
- o St Mary's College
- Acquired samples from producing basins
 - Woodford Shale from Grady County Oklahoma
 - o Eastern Venezuela Basin
 - Discussing with industry to identify problems and future partnerships

Appendix

These slides will not be discussed during the presentation, but are mandatory

Organization Chart

- Project team has participants that cut across the Energy & Environment and Fundamental Sciences Directorates at PNNL
- Pacific Northwest National Laboratory is Operated by Battelle Memorial Institute for the Department of Energy

Milestone Table

			Expected	
#	Туре	Regular or Stretch	Completion Date	Description
	Progress			Coordinate experimental activities with collaborators to complete gas
1	measure	Regular	09/30/2018	sorption measurements on smectite clays
				Assemble and analyze experimental data to determine optimal pressure,
	SMART			temperature, and water content of supercritical fluid that provides >90%
2	Milestone	Regular	09/30/2019	exchange of CH_4 for CO_2 on a prototypical clay.
				Assemble and analyze basin specific experimental data for incorporation into
				simulator for benchmarking against actual production data. The results will
	Progress			also be assembled into a manuscript for publication in a peer reviewed
3	measure	Regular	09/30/2020	journal.

Bibliography

- Bowers, GM, JS Loring, HT Schaef, ED Walter, SD Burton, DW Hoyt, SS Cuniff, N Loganathan, and RJ Kirkpatrick, (2018). "Interaction of Hydrocarbons with Clays under Reservoir Conditions: In situ Infrared and Nuclear Magnetic Resonance Spectroscopy and X-ray Diffraction for Expandable Clays with Variable Wet Supercritical Methane, <u>ACS</u> <u>Earth and Space Chemistry</u>, 2, 640-652.
- Loganathan, N, GM Bowers, AO Yazaydin, HT Schaef, JS Loring, AG Kalinichev, and RJ Kirkpatrick, (2018), "Clay Swelling in Dry scCO₂: Effects of interlayer Cation on the Structure, Dynamics, and Energetics of CO₂ Intercalation Probed by XRD, NMR, and GCMD Simulations", <u>Journal of Physical Chemistry C</u>, 122, 4391-4402.
- Schaef, HT, N Loganathan, G Bowers, RJ Kirkpatrick, AO Yazydin, SD Burton, DW Hoyt, KS Thanthiriwatte, DA Dixon, BP McGrail, KM Rosso, ES Ilton, and JS Loring. (2017) "Tipping Point of Expansion of Layered Aluminosilicates in Weakly Polar solvents: Supercritical CO₂", <u>Applied Materials and Interfaces</u>, 9, 36783-36791.
- Loring, JS, KH Bacon, RD Spring, A Anderko, S Gopinanth, CM Yonkofski, CJ Thompson, BP McGrail, KM Rosso, and HT Schaef. (2017), "Water Solubility at Saturation for CO₂–CH₄ Mixtures at 323.2 K and 9.000 Mpa", <u>Journal of Chemical and Engineering</u>, 62, 1608-1614.
- Bowers, GM, HT Schaef, JS Loring, DW Hoyt, SD Burton, ED Walter, and RJ Kirkpatrick, (2016). "Role of Cations in CO₂ Adsorption, Dynamics, and Hydration in Smectite Clays under in situ Supercritical CO₂ Conditions", <u>Journal of Physical Chemistry C</u>, 121, 577-592.