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• Background
– Motivation | Objectives
– CCSI’s APC Framework Toolset
– UKy-CAER CO2 Capture Pilot-Plant Facility

• Project Plan / Status
• Past Accomplishments

– Identify “most-influential” I/O variables
– Develop dynamic reduced models
– Offline “simulation-based” control studies

• Current Activity / Accomplishments
– Integration with pilot-plant DCS
– Implement real-time APC

• Results
• Summary



Motivation / Contribution to CCSI2
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• Industrial APC Ain’t Easy
– Computational cost
– Need for accurate and fast real-time 

prediction models
– APC / NMPC module costs - $$$
– Non-generic, embedded within DCS

• New Contribution
– NMPC-based industrial control

• Optimal dynamic operation
– Exploit more-efficient third-party 

solvers (MATLAB – sparse matrix 
calculations, IPOPT, etc.)



Background
CCSI’s Advanced Process Control Framework
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Why Advanced Process Control (APC) Framework ?
• Integrated framework for optimal control of CO2 capture processes
• Efficient dynamic transition to desired set-point and mitigation of process

uncertainties
• Enables to protection of intellectual data by serving as a “black-box” surrogate

dynamic-model
• Leverage “fast” D-RMs from CCSI’s D-RM Builder as predictive models  to

optimize control-moves towards cost-effective transient response in face of
process constraints

APC Framework Features
• Constrained Nonlinear Model Predictive Control (NMPC) using DAB-Net D-RM

model
• Constrained Multiple-Model Predictive Control (MMPC) based on multiple linear

state-space “model-bank”
• Unscented Kalman Filter (UKF)-based state-estimation



Background
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• University of Kentucky’s CCS Project
– Center for Applied Energy Research (CAER)

• Other Participants: LG&E/KU, Hitachi, EPRI, etc.
– 2 MWth (0.7 MWe) slip stream test facility
– At E. W. Brown Generating Station

• Louisville Gas & Electric (LG&E) and Kentucky Utilities (KU)
• In Harrodsburg, KY, 30 miles from UKy-CAER

– Sponsors
• DOE/NETL ($14.55 Million)
• Kentucky Department of Energy Development and Independence
• Carbon Management Research Group (Consortium)

– Catch and release program
• Opportunity: improve control responses time | residence time in 

solvent/desiccant loops



CAER’s CO2 Capture Test Facility

6

LG&E/KU Brown Station CO2 Capture Facility

Existing Control System
• Emerson’s DeltaV system
• All standard PID Controllers 

(w/ 2-3 cascade loops)
• Currently uses 170 process 

variables
– Maximum 250 variables from 

the license
• Over 20 manipulated input 

variables
• Solvent residence time: ~30 

min through the loop; scope 
for improvement



Project Status/Plan
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• Assess control requirements
• Operability and controllability analysis

•Identify relevant I/O process variables
•Design step-change sequence
•Run step-tests 

− Keep low-level PID controllers unchanged
• Build D-RM for the system

•Validate approach on secondary-stripping column sub-section
•Develop D-RM for entire plant

− Testing data | Validation data
• Evaluate APC methodology for online real-time control

•Validate APC approach using offline “plant” based on D-RM – demonstrated benefits
•Integrate CCSI’s APC Framework w/ pilot-plant’s DCS
•Closed-loop identification based on historical data

• Implement real-time nonlinear MPC
•Controller tuning and validation (preliminary)
•Demonstrate operational improvement over existing methods



CAER’s CO2 Capture Process
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• Three loops
– Flue gas pretreatment loop
– Amine solvent loop
– Liquid desiccant loop

• Solvent loop design
– Single absorber with intercooler
– 2 strippers

• Primary stripper
• Secondary air stripper

• Cooling tower/liquid desiccant loop design
– Removing moisture in humid air by liquid desiccant
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Relevant Process Variables
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• Manipulated Inputs (MV)
– Solvent flow rate
– Primary stripper pressure
– Reboiler steam flowrate
– Flow rate of air to secondary stripper
– Cooling air flowrate
– Desiccant flowrate
– Rich-solvent heater steam flowrate
– CO2 concentration of flue gas to absorber (disturbance)

• Output / Controlled Variables (CV)
– Percentage of CO2 captured
– Temperatures of product streams of individual columns 
– Compositions of product streams



Previous “offline” Control Studies
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Industrial Implementation: D-RM development
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Results – System Identification / D-RM Building
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5 Input Variables



Results – System Identification / D-RM Building
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Industrial APC Implementation
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Integration with pilot-plant DCS
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• OPC (OLE for Process Control) Protocol
•Identify existing Emerson Delta-V OPC server on pilot-plant DCS
•Create OPC client within CCSI APC Framework
•Establish connection from client to server
•Identify process variables tags (r/w permissions) available on server – PLC/charm names
•Create read-only PV tags and writable remote setpoint (SP) tags on client
•Conduct step-tests on relevant remote SP and validate PV with DCS historian

• Develop event callbacks routines for solving real-time control optimization problem
• Establish real-time communication at each sampling “clock” time

OPC Write (Sync):
Bucket....Real8

OPC Read (Device):
Bucket...e.Real8

V

Q

V

OPC Config
Real-Time
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Results – Real-time APC (preliminary study)
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Summary
Performance Improvement

UKy/CAER existing control APC Framework
No automated control of CO2 capture Optimal setpoint tracking of CO2 possible 

using NMPC
Rely on overhead T high-alarm visual feeds to 
rectify solvent loss to stack.

Overhead T monitored and predicted via 
model. Take necessary steps before violating 
constraints

Square I/O system required for multiple single-
input-single-out controllers – e.g. CO2 capture 
may only be paired with reboiler-steam flow

One output may optimally be controlled by two 
or more sensitive inputs – e.g. both reboiler 
and RHR steam contribute to controlling CO2
capture

Fixed control parameters leading to sub-
optimal performance when operating far from 
“tuned” regime

NMPC with Kalman Filter updates the model 
based on extent of plant-model mismatch



Summary
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Demonstrated CCSI’s APC Tools applicability and benefits in CO2 capture 
plant

– Identified most-influential pilot plat’s PV
– Developed dynamic reduced-order model (D-RM)
– Demonstrated ability to interface with existing pilot-plant DCS using industry-

standard OPC
– Implement real-time APC for CO2 capture SP tracking with temperature 

constraint
Future Work

– Refine existing D-RM through closed-loop identification using historical data
– Implement plant-wide APC with economic optimization and demonstrate 

benefits over existing control methods
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Disclaimer
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This presentation was prepared as an account of work sponsored by an agency of the United States Government. 
Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, 
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness 
of any information, apparatus, product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States Government or any agency 
thereof.
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