SRI International

2019 NETL CO₂ Capture Technology Project Review Meeting

Mixed-Salt Based Transformational Solvent Technology for CO₂ Capture

Palitha Jayaweera

Principal Scientist

Advanced Technology and Systems Division

SRI International

August 26-30, 2019 • Convention Center • Pittsburgh, Pennsylvania

Presentation Outline

- Technology Background
 - Needs to reduce CO₂ capture costs
 - Advanced Mixed-Salt Process
 - Process Benefits
- Project Structure
 - Objectives and Budget
 - Project Team and Organization
 - Development Path
 - Project Tasks
 - Available Resources
- Project Status and Test Results Update
- Acknowledgements

Reducing Capture Costs Beyond the Current Values

New transformational technologies

-A step reduction of the regeneration energy is required

- Low regeneration energy by solvent pairing
- Energy recovery by heat integration

Pathway to reach DOE 2030 CO₂ capture goals

Advanced Mixed-Salt Process Details

How it works:

Selected composition of potassium carbonate , ammonium salts and an additive

Overall heat of reaction 35 to 60 kJ/mol (tunable)

Absorber operation at 20° - 40° C at 1 atm

Regenerator operation at 90° - 120° C at ~10 atm

• Produce high-pressure CO₂ stream

K₂CO₃–NH₃–Additive-CO₂–H₂O system

High CO₂ cycling capacity Reduced Ammonia Emission Reduced Reboiler duty Reduced CO₂ Compression Energy

A significant step change for reaching DOE's reduced CO₂ capture cost targets.

Process Enhancements

Enhanced Kinetics at High Temperature

Observed rate enhancement of CO₂ absorption efficiency by comparison of mixed-salt with NH₃

Low Energy Requirement for CO₂ Stripping

Estimated regenerator heat requirement for mixedsalt system with 0.2 to 0.6 cyclic CO_2 loading. Comparison with neat K_2CO_3 and MEA is shown

(Source for the Shell K₂CO₃ process, Schoon and van Straelen, 2011).

Absorber side: Reduced packing height Regenerator side: Reduced water evaporation

Project Objectives, Budget and Period of Performance

- Project Objectives
 - High CO₂ loading capacity
 - Solvent rich system
 - Potential to reach DOE cost target \$30/ton CO₂ by 2030
- Period of Performance: 6/1/2018 to 11/30/2021
- Project budget (Contract No: DE-FE0031597)
 - DOE Funding: \$3,105,797
 - Partner Share: \$951,897

Project Team

Mixed-Salt Based Transformational Solvent Technology for CO₂ Capture

Project Manager: Andrew Jones, NETL Prime Contractor: SRI International Project Team: US and International Partners

Opportunities for US-Norway Collaborations leading to new IP and new markets

Work Organization

- SRI International, USA
 - Advanced mixed-salt composition development and testing
- DTU, Denmark (Cost-share partner)
 - VLE Measurements & Thermodynamic modeling
 - OLI Systems, USA

•

•

- Flowsheet Model Design (energy and mass balance)
- Trimeric, Corp., USA
 - Process Techno Economic Analysis
- SINTEF, Norway (Cost-share partner)
 - Emission and degradation studies
 - Alternative Mixed-salt composition development and testing

Mixed-Salt Based Transformational Solvent Technology for CO₂ Capture

Team : SRI (USA), SINTEF (Norway), OLI (USA), DTU (Denmark), Trimeric (USA) Funding : US DOE (SRI Project) & CLIMIT (SINTEF Project)

Opportunities for reducing CO_2 from small and large-scale applications

Small bench scale absorber system for AMSP testing

Water wash Absorption column Reflux chamber Amine NH_3 K₂CO₃ Solution

2017 SRI Internationa

Existing Infrastructure for Testing *Photographs of large bench scale setup*

Large bench scale system

A: Rich solution inlet locations

- B: Discharge locations for high NH₃/K solution
- C: Discharge locations for low NH₃/K solution
- D: Heat exchangers (Cold rich \leftrightarrow Hot lean)

Lab scale system

Project Tasks

BP1: 24 months BP2: 12months

- Task 1: Project Management and Planning (SRI)
- Task 2: Vapor-Liquid-Equilibria Measurements (DTU)
- Task 3: Process Kinetic Assessment (SRI)
- Task 4: Emission and Degradation Measurements (SINTEF)
 - Subtasks 4.1 and 4.2: Emission and thermal degradation measurements
 - Subtask 4.3; Integrated testing with amines and mixed-salt blends
- Task 5: Rate-Based Model Development (OLI)
- Task 6: Preliminary Techno-economic Analysis (Trimeric)
- Task 7: Integrated System Testing (SRI)
- Task 8: Process Flowsheet Model Development (OLI)
- Task 9: Techno-economic Analysis (Trimeric)

* Tasks in Red will be performed in BP2

BP1 Project Status Update

As of 7/31/2019	Status		
Task 1- Project Management and Planning	On going		
Task. 2.0- VLE Measurements at DTU			
Subcontract award to DTU	Completed		
VLE measurements	In Progress		
Task 3.0 - Kinetic Measurements at SRI			
Bench-scale set-up test plan development	completed		
Bench-scale testing	In progress		
Task 4.0 – New amine Development and Emission Assessment			
Technology transfer and cost-share agreement to SINTEF	completed		
Information exchange	In progress		
Task 5.0 – Process Modeling			
Subcontract award to OLI	Completed		
Flow-sheet modeling	In progress		
Task 6.0 – Preliminary Technoeconomic Analysis (TEA)			
Subcontract award Trimeric	Completed		
Preliminary TEA	To begin in November		

VLE Modeling at SRI

Run Table

Testing at SRI

Comparison of test data with and modeling

Run #	Composition	Temperature (°C)	Gas flow (SLPM)	CO ₂ loading (initial)	CO2 loading (final)	Concentration (m)
1	420	24 <=> 31 °C	32.5	0.24	0.52	6
2	520	29 ±1°C	17	0.22	0.36	6
3	52(0.5)	28 <=> 33 °C	20.5	0.14	0.42	7.2
4	521	24 <=> 28 °C	21	0.16	0.5	7.1
5	522 (air only, no CO2)	n/a	n/a	n/a	n/a	n/a
6	522 (continue from run 5)	21 ±1°C	10	0.15	0.31	8
7	522	21 ±1°C	10.4	0.13	0.3	8.6
8	522 (continue from run 7)	21	4 to 40	0.34	0.53	8
9	622	21 ±1°C	4 to 40	0.11	0.41	8.6
10	522	20	10 <=> 11	0.3	0.62	8.75
11	522	20	10 <=> 11	0.33	0.565	8.67
12	11-cont.	n/a	n/a	n/a	n/a	n/a
13	621	20.5 ±0.5°C	10.0 <=> 10.7	0.3	0.57	8.475
14	522	16 <=> 20 °C	9.9 <=> 10.7	0.31	0.54	8.65
15	522	20 °C	10	0.35	0.65	8.9
16	522	22.5 °C	10	0.33	0.58	9
17	522	25.5 °C	10	0.34	0.57	8.7
18	621	20	10	0.4		9
19	423	20	10	0.4		9

Effect of CO₂ loading on efficiency

2017 SRI International

Measured and calculated system pressure of 0.2 to 0.5 CO_2 loaded AMSP solutions with temperature

Process Modeling at OLI

SRI International

Acknowledgements

NETL (DOE)

• Andrew Jones, Steven Mascaro, Jose Figueroa, Lynn Bricket, John Litynski and other NETL staff members

SRI Team

 Indira Jayaweera, Palitha Jayaweera, Elisabeth Perea, Michael Wales, Bill Olsen, Chris Lantman

US and International Collaborators

- SINTEF (Hanne Kvamsdal)
- OLI Systems (Prodip Kondu, Ron Springer and Andre Anderko),
- POLIMI (Gianluca Valenti, Davide Bonalumi, and Stefano Lillia)
- Stanford University (Adam Brant and Charles Kang)
- DTU (Kaj Thomsen and Philip Loldrup Fosbøl)
- Trimeric Corporation (Andrew Sexton)

Thank You

Contact:

Palitha Jayaweera

palitha.jayaweera@sri.com

1-650-859-2989

SRI International

Headquarters 333 Ravenswood Avenue Menlo Park, CA 94025 +1.650.859.2000

Additional U.S. and international locations

www.sri.com

Disclaimer

This presentation includes an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.