Mixed-Salt Based Transformational Solvent Technology for CO₂ Capture

Palitha Jayaweera
Principal Scientist
Advanced Technology and Systems Division
SRI International

August 26-30, 2019 • Convention Center • Pittsburgh, Pennsylvania
Presentation Outline

• Technology Background
 – Needs to reduce CO$_2$ capture costs
 – Advanced Mixed-Salt Process
 – Process Benefits
• Project Structure
 – Objectives and Budget
 – Project Team and Organization
 – Development Path
 – Project Tasks
 – Available Resources
• Project Status and Test Results Update
• Acknowledgements
Reducing Capture Costs Beyond the Current Values

New transformational technologies

- *A step reduction of the regeneration energy is required*

- Low regeneration energy by solvent pairing
- Energy recovery by heat integration

Pathway to reach DOE 2030 CO₂ capture goals
Advanced Mixed-Salt Process Details

How it works:

Selected composition of potassium carbonate, ammonium salts and an additive

- Overall heat of reaction 35 to 60 kJ/mol (tunable)

Absorber operation at 20° - 40° C at 1 atm

Regenerator operation at 90° - 120° C at ~10 atm

- Produce high-pressure CO₂ stream

K₂CO₃–NH₃–Additive-CO₂–H₂O system

High CO₂ cycling capacity
Reduced Ammonia Emission
Reduced Reboiler duty
Reduced CO₂ Compression Energy

A significant step change for reaching DOE’s reduced CO₂ capture cost targets.
Enhanced Kinetics at High Temperature

- Observed rate enhancement of CO₂ absorption efficiency by comparison of mixed-salt with NH₃.

Low Energy Requirement for CO₂ Stripping

- Estimated regenerator heat requirement for mixed-salt system with 0.2 to 0.6 cyclic CO₂ loading.
- Comparison with neat K₂CO₃ and MEA is shown.

(Source for the Shell K₂CO₃ process, Schoon and van Straelen, 2011).

Absorber side: Reduced packing height
Regenerator side: Reduced water evaporation
Project Objectives, Budget and Period of Performance

- **Project Objectives**
 - High CO₂ loading capacity
 - Solvent rich system
 - Potential to reach DOE cost target $30/ton CO₂ by 2030

- **Period of Performance:** 6/1/2018 to 11/30/2021

- **Project budget (Contract No: DE-FE0031597)**
 - DOE Funding: $3,105,797
 - Partner Share: $951,897
Project Team

Mixed-Salt Based Transformational Solvent Technology for CO₂ Capture

Project Manager: Andrew Jones, NETL
Prime Contractor: SRI International
Project Team: US and International Partners

Opportunities for US-Norway Collaborations leading to new IP and new markets
Work Organization

VLE Measurements
- Mixed-Salt based solvents

Kinetic Measurements
- Absorption and desorption kinetics at lab scale
- Absorption/desorption (integrated) rates at bench scale

Modeling
- Equilibrium and rate based modeling
- Flow-sheet modeling of the CC plant
- PC plant and CC plant Integration modeling

Process Risk Evaluation
- Chemical stability measurements
- Emission measurements
- Degradation measurements

- SRI International, USA
 - Advanced mixed-salt composition development and testing
- DTU, Denmark (Cost-share partner)
 - VLE Measurements & Thermodynamic modeling
- OLI Systems, USA
 - Flowsheet Model Design (energy and mass balance)
- Trimeric, Corp., USA
 - Process Techno Economic Analysis
- SINTEF, Norway (Cost-share partner)
 - Emission and degradation studies
 - Alternative Mixed-salt composition development and testing
Mixed-Salt Based Transformational Solvent Technology for CO₂ Capture

Team: SRI (USA), SINTEF (Norway), OLI (USA), DTU (Denmark), Trimeric (USA)
Funding: US DOE (SRI Project) & CLIMIT (SINTEF Project)

Opportunities for reducing CO₂ from small and large-scale applications
Small bench scale absorber system for AMSP testing
Existing Infrastructure for Testing

Photographs of large bench scale setup

Large bench scale system

Lab scale system

A: Rich solution inlet locations
B: Discharge locations for high NH₃/K solution
C: Discharge locations for low NH₃/K solution
D: Heat exchangers (Cold rich↔ Hot lean)
Project Tasks

BP1: 24 months BP2: 12 months

- Task 1: Project Management and Planning (SRI)
- Task 2: Vapor-Liquid-Equilibria Measurements (DTU)
- Task 3: Process Kinetic Assessment (SRI)
- Task 4: Emission and Degradation Measurements (SINTEF)
 - Subtasks 4.1 and 4.2: Emission and thermal degradation measurements
 - Subtask 4.3: Integrated testing with amines and mixed-salt blends
- Task 5: Rate-Based Model Development (OLI)
- Task 6: Preliminary Techno-economic Analysis (Trimeric)
- Task 7: Integrated System Testing (SRI)
- Task 8: Process Flowsheet Model Development (OLI)
- Task 9: Techno-economic Analysis (Trimeric)

* Tasks in Red will be performed in BP2
<table>
<thead>
<tr>
<th>Task</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>As of 7/31/2019</td>
<td></td>
</tr>
<tr>
<td>Task 1- Project Management and Planning</td>
<td>On going</td>
</tr>
<tr>
<td>Task. 2.0- VLE Measurements at DTU</td>
<td></td>
</tr>
<tr>
<td>Subcontract award to DTU</td>
<td>Completed</td>
</tr>
<tr>
<td>VLE measurements</td>
<td>In Progress</td>
</tr>
<tr>
<td>Task 3.0 - Kinetic Measurements at SRI</td>
<td></td>
</tr>
<tr>
<td>Bench-scale set-up test plan development</td>
<td>completed</td>
</tr>
<tr>
<td>Bench-scale testing</td>
<td>In progress</td>
</tr>
<tr>
<td>Task 4.0 – New amine Development and Emission Assessment</td>
<td></td>
</tr>
<tr>
<td>Technology transfer and cost-share agreement to SINTEF</td>
<td>completed</td>
</tr>
<tr>
<td>Information exchange</td>
<td>In progress</td>
</tr>
<tr>
<td>Task 5.0 – Process Modeling</td>
<td></td>
</tr>
<tr>
<td>Subcontract award to OLI</td>
<td>Completed</td>
</tr>
<tr>
<td>Flow-sheet modeling</td>
<td>In progress</td>
</tr>
<tr>
<td>Task 6.0 – Preliminary Technoeconomic Analysis (TEA)</td>
<td></td>
</tr>
<tr>
<td>Subcontract award Trimeric</td>
<td>Completed</td>
</tr>
<tr>
<td>Preliminary TEA</td>
<td>To begin in November</td>
</tr>
</tbody>
</table>
VLE Modeling at SRI
Testing at SRI

Comparison of test data with and modeling

Effect of CO₂ loading on efficiency

Correlation between pH with CO₂ loading
Measured and calculated system pressure of 0.2 to 0.5 CO$_2$ loaded AMSP solutions with temperature
Process Modeling at OLI

Comparison of Solvent Densities in Abs 1

Comparison of Dissolved CO₂ Concentrations

Comparison of Dissolved NH₃ Concentrations

Comparison of H₂O Emissions

- Case 1 vs. Case 2
- Density (g/ml) vs. Temperature (°C)
- Concentration (m) vs. Temperature (°C)
- Water Vapor Flow Rate (mole/hr) vs. Temperature (°C)

No Solids

10 bar

High CO₂ carrying capacity

Reduced steam stripping
Acknowledgements

NETL (DOE)
- Andrew Jones, Steven Mascaro, Jose Figueroa, Lynn Bricket, John Litynski and other NETL staff members

SRI Team
- Indira Jayaweera, Palitha Jayaweera, Elisabeth Perea, Michael Wales, Bill Olsen, Chris Lantman

US and International Collaborators
- SINTEF (Hanne Kvamsdal)
- OLI Systems (Prodip Kondu, Ron Springer and Andre Anderko),
- POLIMI (Gianluca Valenti, Davide Bonalumi, and Stefano Lillia)
- Stanford University (Adam Brant and Charles Kang)
- DTU (Kaj Thomsen and Philip Loldrup Fosbøl)
- Trimeric Corporation (Andrew Sexton)
Thank You

Contact:

Palitha Jayaweera

calitha.jayaweera@sri.com

1-650-859-2989

Disclaimer
This presentation includes an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.