SRI International

2018 NETL CO₂ Capture Technology Project Review Meeting

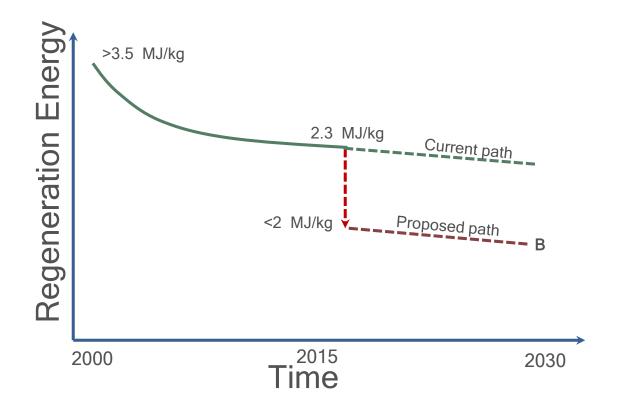
Mixed-Salt Based Transformational Solvent Technology for CO₂ Capture

Palitha Jayaweera

Principal Scientist

Advanced Technology and Systems Division SRI International

August 13 - 17, 2018 • Omni William Penn Hotel • Pittsburgh, Pennsylvania


Presentation Outline

- Technology Background
 - Needs to reduce CO₂ capture costs
 - Advanced Mixed-Salt Process
 - Process Benefits
- New Project Structure
 - Objectives and Budget
 - Project Team and Organization
 - Development Path
 - Work Organization
 - Project Tasks
 - Available Resources
 - Project Status Update
- Acknowledgements

Reducing Capture Costs Beyond the Current Values

New transformational technologies

-A step reduction of the regeneration energy is required

- Low regeneration energy by solvent pairing
- Energy recovery by heat integration

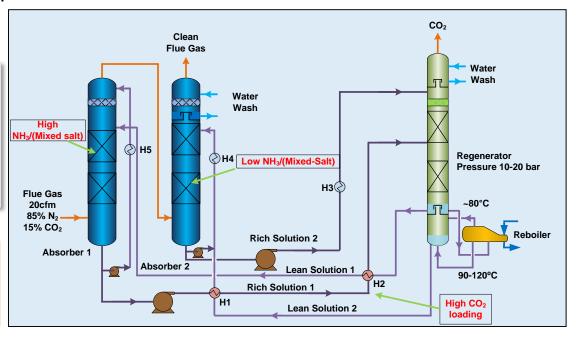
Advanced Mixed-Salt Process Details

How it works:

Selected composition of potassium carbonate, ammonium salts and an additive

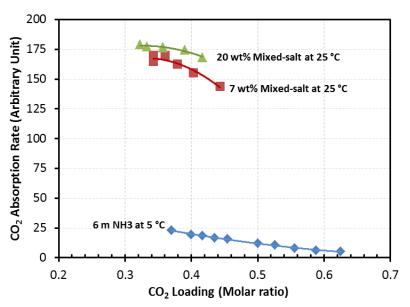
Overall heat of reaction 35 to 60 kJ/mol (tunable)

Absorber operation at 20° - 40° C at 1 atm

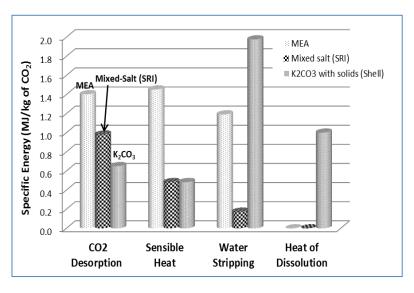

Regenerator operation at 90° - 120° C at ~10 atm

Produce high-pressure CO₂ stream

K₂CO₃–NH₃–Additive-CO₂–H₂O system


High CO₂ cycling capacity
Reduced Ammonia Emission
Reduced Reboiler duty
Reduced CO₂ Compression Energy

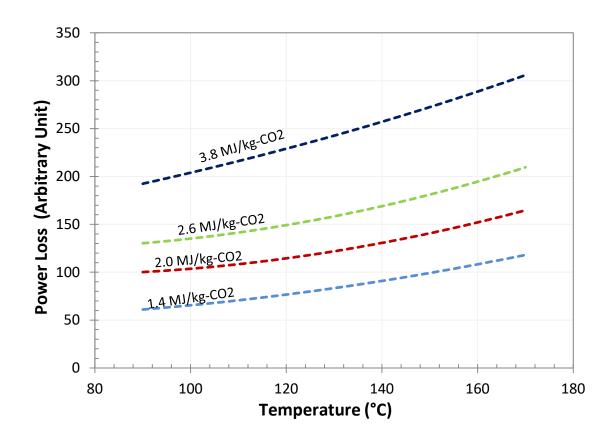
A significant step change for reaching DOE's reduced CO₂ capture cost targets.


Process Enhancements

Enhanced Kinetics at High Temperature

Observed rate enhancement of CO₂ absorption efficiency by comparison of mixed-salt with NH₃

Low Energy Requirement for CO₂ Stripping

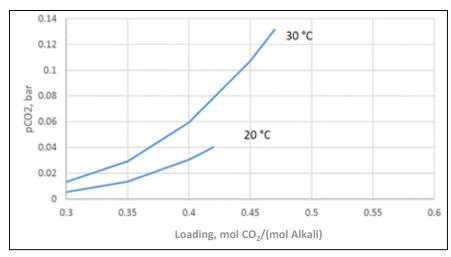

Estimated regenerator heat requirement for mixedsalt system with 0.2 to 0.6 cyclic CO₂ loading. Comparison with neat K₂CO₃ and MEA is shown

(Source for the Shell K₂CO₃ process, Schoon and van Straelen, 2011).

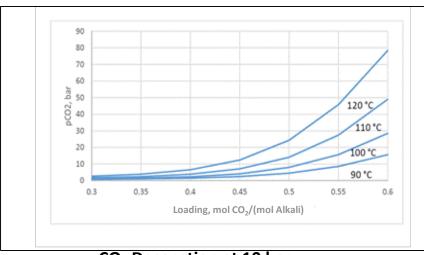
Absorber side: Reduced packing height

Regenerator side: Reduced water evaporation

Power loss due to Steam Extraction



The net loss in power output from the steam cycle due to steam extraction for capture as a function of solvent regeneration temperature and the solvent heat requirement for regeneration.


Source: Adapted from Luquiaud and Gibbins, Chem Eng Res Des (2011); the Mixed-Salt data are from SRI's TEA

Modeling Data

CO₂ Partial Pressure of 10 molal Advanced Mixed-Salt Solution

CO₂ Absorption at 20° and 30°C.

CO₂ Desorption at 10 bar

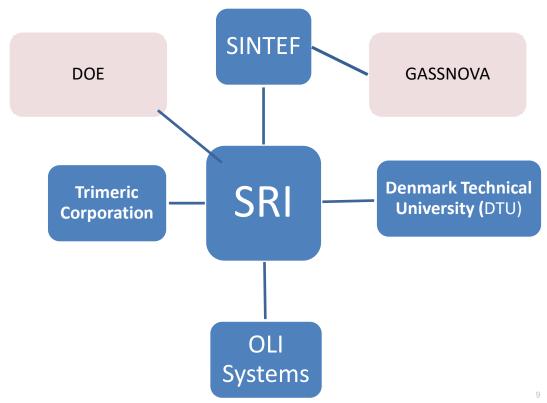
For the regeneration, the modeled composition can desorb CO_2 at > 10 bar at 100° C, a much lower temperature than MSP.

AMSP — Pathway to reach DOE 2030 CO₂ capture goals

New Project

Mixed-Salt Based Transformational Solvent Technology for CO₂ Capture

- Project Objectives
 - Very high CO₂ loading capacity
 - Solvent rich system
 - Potential to reach DOE cost target \$30/ton CO₂ by 2030
- Project budget (Contract No: DE-FE0031597)
 - DOE Funding: \$2,999,992 (~79%)
 - Partner Share: \$782,817 (~21%)

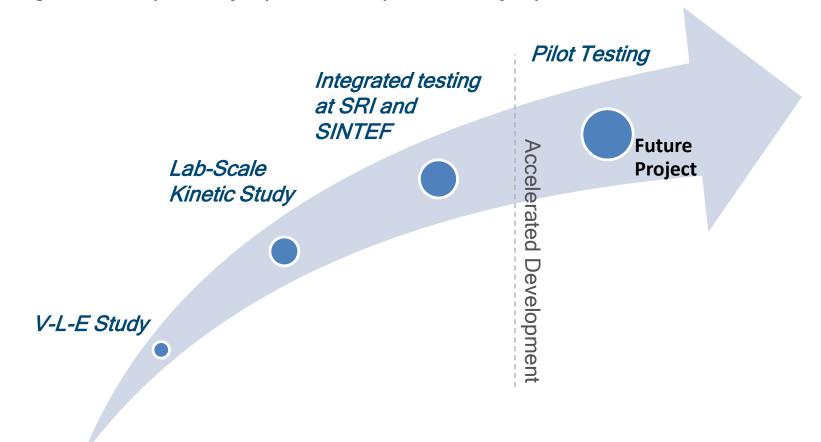

Project Team

Mixed-Salt Based Transformational Solvent Technology for CO₂ Capture

Project Manager: Andrew Jones, NETL

Prime Contractor: SRI International

Project Team: US and International Partners



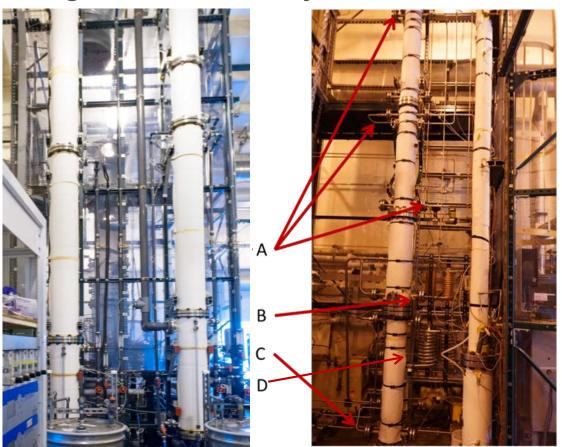
Opportunities for US-Norway Collaborations leading to new IP and new markets

@2019 SDI Internations

Mixed-Salt Based Transformational Solvent Technology for CO₂ Capture

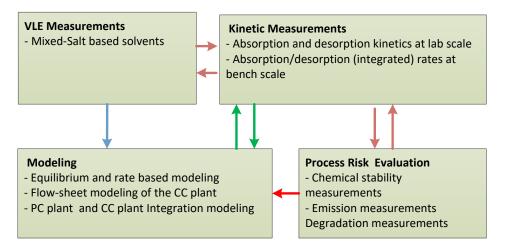
Team: SRI (USA), SINTEF (Norway), OLI (USA), DTU (Denmark), Trimeric (USA) Funding: US DOE (SRI Project) & CLIMIT (SINTEF Project)

Existing Infrastructure for Testing


Photographs of large bench scale setup

Large bench scale system

Lab scale system


A: Rich solution inlet locations

B: Discharge locations for high NH₃/K solutio

C: Discharge locations for low NH₃/K solution

D: Heat exchangers (Cold rich ← Hot lean)

Work Organization

- SRI International, USA
 - Advanced mixed-salt composition development and testing
- DTU, Denmark (Cost-share partner)
 - VLE Measurements & Thermodynamic modeling
- OLI Systems, USA
 - Flowsheet Model Design (energy and mass balance)
- Trimeric, Corp., USA
 - Process Techno Economic Analysis
- SINTEF, Norway (Cost-share partner)
 - Emission and degradation studies
 - Alternative Mixed-salt composition development and testing

Project Tasks

BP1: 18 months BP2: 18 months

- Task 1: Project Management and Planning (SRI)
- Task 2: Vapor-Liquid-Equilibria Measurements (DTU)
- Task 3: Process Kinetic Assessment (SRI)
- Task 4: Emission and Degradation Measurements (SINTEF)
- Task 5: Rate-Based Model Development (OLI)
- Task 6: Preliminary Techno-economic Analysis (Trimeric)
- Task 7: Integrated System Testing (SRI)
- Task 8: Process Flowsheet Model Development (OLI)
- Task 9: Techno-economic Analysis (Trimeric)

^{*} Tasks in Red will be performed in BP2

Project Status Update

As of (7/31/2018)	Status
Task 1.0 - Project Management and Planning	
Task 2.0 – VLE Measurements at DTU	
Subcontract award	Completed
VLE measurements	To begin soon
Task 3.0- Kinetic Measurements at SRI	
Bench-scale setup and test plan development	Started
Absorption measurements	To begin soon
Task 5.0- Rate Based Model Development at OLI	
Subcontract award	Completed
Flow-sheet modeling	To begin soon
Task 6.0- Preliminary Techno Economic Analysis (OLI/Trimeric/SRI)	
Subcontract Award to Trimeric	In progress
Preliminary TEA	To begin soon

Acknowledgements

NETL (DOE)

 Andrew Jones, Steven Mascaro, Jose Figueroa, Lynn Bricket, John Litynski and other NETL staff members

SRI Team

 Indira Jayaweera, Palitha Jayaweera, Elisabeth Perea, Regina Elmore, Srinivas Bhamidi, Bill Olsen, Marcy Berding, Chris Lantman, and Barbara Heydorn

US and International Collaborators

OLI Systems (Prodip Kondu and Andre Anderko),
 POLIMI (Gianluca Valenti, Davide Bonalumi, and Stefano Lillia),
 Stanford University (Adam Brant and Charles Kang),
 Kaj Thomsen, Eli Gal, and Trimeric Corporation (Andrew Sexton)

Industrial Partner/Observer

• IHI Corporation and BHGE

SRI International

Thank You

Contact:

Palitha Jayaweera

palitha.jayaweera@sri.com

1-650-859-2989

Headquarters 333 Ravenswood Avenue Menlo Park, CA 94025

Additional U.S. and international locations

www.sri.com

+1.650.859.2000

Disclaimer

This presentation includes an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.