

High Temperature Ceramic-Carbonate Dual-Phase Membrane Reactor for Pre-Combustion Carbon Dioxide Capture

Arizona State University Tempe, Arizona

2019 NETL CO₂ Capture, Utilization, Storage, and Oil & Gas Technologies Integrated Review Meeting August 27, 2019, Pittsburgh, Penn

Overview

Timeline

- ✓ Project start date:
 Oct. 1, 2018
- ✓ Project end date:
 Sep. 30, 2021
- ✓ Budget Periods:
 - I: 10/1/2018-3/31/2020
 - II: 4/1/2020-9/30/2021

Budget

- ✓ Total project funding
 - DOE \$800,000
 - Cost-share: **\$200,007**
 - □ Total: **\$1,000,007**

Research Area 1

 ✓ Lab-Scale CO₂ Capture Development and Testing on Simulated Syngas

Partners

- ✓ Arizona State University (ASU)
- University of South Carolina (USC)

Project Objectives

- To synthesize the chemically/thermally stable Ceramic Carbonate Dual-Phase (CCDP) membranes.
 - \checkmark CO₂ permeance > 2000 GPU (6.5x10⁻⁷ mol/m²·s·Pa)
 - ✓ Selectivity > 500
 - ✓ Resistant to H_2S
- To fabricate tubular CCDP membrane reactor modules.
 - ✓ High-temperature >700 ° C
 - ✓ High-pressure > 20 atm
 - ✓ WGS membrane reactor applications.
- To identify experimental conditions for WGS.
 - ✓ 99% purity of CO_2 stream
 - ✓ 90% purity of H_2 stream

DOE Project: High-Temperature Ceramic-Carbonate Dual-Phase Membrane Reactor for Pre-Combustion Carbon Dioxide Capture Task description

Background: IGCC process with Precombustion CO₂ Capture

Background Concept of Ceramic-Carbonate Dual-Phase (CCDP) Membrane

M Anderson & YS Lin, Proc. ICIM2006, pp. 678-681 (2006); J. Membr. Sci. 357, 122(2010)

- Project Management and Planning (Task 1.0)
- □ Synthesis and Characterization of SDC-MC Membranes (Task 2.0)
- □ High Temperature, High Pressure CO₂ Permeation Studies (Task 3.0)
 - Construction of high temperature and high pressure CO₂ permeation/separation setup (Subtask 3.1)

Development of Improved Ceramic-Carbonate Dual-Phase Materials and Membranes (Task 4.0)

- Synthesis of ScSZ with desired microstructure (Subtask 4.1)
- Characterization of ScSZ disks (Subtask 4.2)
- □ Study on CO₂ Permeation Properties of ScSZ-MC Membranes (Task 5.0)
 - Study of the effect of temperature and CO₂ concentration on flux (Subtask 5.1)

Task 2.0: Synthesis and Characterization of SDC-MC Membranes

SDC

- □ High oxygen ion conductivity
- Chemically/thermally stable under reductive atmosphere
- Synthesized and characterized in our lab for a long time

\Box Agglomerates of ~ 1µm made of particle <

10 nm

□ Pure ionic conductivity: Sm-doped CeO₂ (SDC)

□ Thermal stability of SDC support

Progress and Accomplishments Task 2.0: Synthesis and Characterization of SDC-MC Membranes

- SDC tubular supports by the Centrifugal Casting (CC) method
- Development of a module for high rate centrifugation
- Design of highly efficient sintering process
- Long, straight and uniformcircumference tubes

Initial stage of tubes fabrication

Tubes Fabrication improved

Progress and Accomplishments Task 2.0: Synthesis and Characterization of SDC-MC Membranes

10

Progress and Accomplishments Task 2.0: Synthesis and Characterization of SDC-MC Membranes

10

Task 2.0: Synthesis and Characterization of SDC-MC Membranes

Molten carbonates Infiltration at 550° C	2
--	---

Carbonates mixture	Li/Na/K	Li/K	Li/Na	Na/K
Composition (mol%)	43.5/31.5 /25	62/38	52/48	56/44
Melting Point (°C)	397	488	501	710
CO ₃ ⁼ Conductivity (S/cm)	1.24	1.15	1.75	1.17

Task 3.0: High Temperature, High Pressure CO₂ Permeation Studies

Task 3.1: Construction of High Temperature and High Pressure CO₂ Permeation/Separation setup

Task 3.1: Construction of High Temperature and High Pressure CO₂ Permeation/Separation setup

□ Seals tested at high temperature

- ✓ Graphite
- ✓ Strip-metal graphite
- ✓ Flexible metal-graphite
- ✓ Home-made glaze
- ✓ Commercial glaze

□ Seal tested at high pressure

- ✓ Graphite
 - Leak % <4%
 - Stable at temp ∼700° C
 - o Pressure ~14 bar

Best seal performance

- ✓ Flexible metal-graphite
 - o Leak % <0.1%</p>
 - Stable temp ~ 900° C

Task 4.0: Development of Improved Ceramic-Carbonate Dual-Phase Materials and Membranes

Task 4.1: Synthesis of ScSZ with desired microstructure Task 4.2: Characterization of ScSZ disks

ScSZ powders synthesized via EDTA-citric acid method

Task 5.0: Study on CO_2 Permeation Properties of ScSZ-MC Membranes Task 5.1: Study of the effect of temperature and CO_2 concentration on flux

Future Work

□ Task 3.0 High Temperature, High Pressure CO₂ Permeation Studies

- ✤ High pressure CO₂ permeation and separation study
- Modeling and analysis of CO₂ Permeation
- □ Task 5.0 Study on CO₂ Permeation Properties of ScSZ-MC Membranes
 - Flux stability study
- □ Task 6.0 Fabrication and Characterization of Sc-ZrO₂ Tubular Membranes
- □ Task 7.0: Modeling and analysis of CCDP membrane reactor for WGSR

Conclusions

- The module for high-temperature, high-pressure WGS membrane reactor and CO₂ separation was successfully built.
- High-pressure and high-temperature seal was developed for avoiding leaks.
- SDC tubular membranes were tested at high temperatures, with selectivity of at least 4000.
- ScSZ disk membranes were tested at high temperatures with high CO₂ permeation flux of 8700 GPU.

Acknowledgement

- Financial support: U.S. Department of Energy and National Energy Technology Laboratory (Federal Grant: DE-FE0031634).
- Project manager: Andrew O'Palko
- Collaborators:
 - ✓ Prof. Kevin Huang

✓ Dr. Shichen Sun

UNIVERSITY OF

Thank You!

Disclaimer

"This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."