ROTA-CAP: An Intensified Carbon Capture System Using Rotating Packed Beds

Project Overview

Funding

- DOE Funding: \$2,900,000
 Non-DOE Funding: \$725,00
 - Non-DOE Funding: \$725,000
 - Total Value: \$3,625,000

allerit

Overall Project Performance Dates

Project duration: 30 months

Project Participants

GasTechnology Institute (GTI)

- Clean Carbon Solutions Ltd. (CCSL)
- National Carbon Capture Center (NCCC)

Overall Project Objectives

- DOE's cost target of ≤\$30/tonne CO₂
- Achieving \geq 95 % product CO₂ purity

Major participants (collaborative projects):

The Project Team is comprised of GTI, CCSL and NCCC. The proposed program utilizes each Team Member's unique expertise.

GTI has expertise is in bench-scale and pilotscale research and development (R&D) plus scoping economic analysis. We bring over 75 years of performing applied R&D for DOE and other governmental agencies as well as industry and bringing technology to the market to the effort.

CCSL is an early stage process technology venture with commercially proven products and process licensing with technologies for industrial decarbonization commercial while reducing the environmental impact of manmade emissions. Their focus is to provide the most cost-effective CO₂ capture and CO₂ treating technology with patented chemistry and engineering know-how at more than 25 sites globally.

NCCC specializes in evaluation of developing technologies using coal-derived gas with the concomitant impurities, providing critical information on material and process suitability for scale-up to commercial applications.

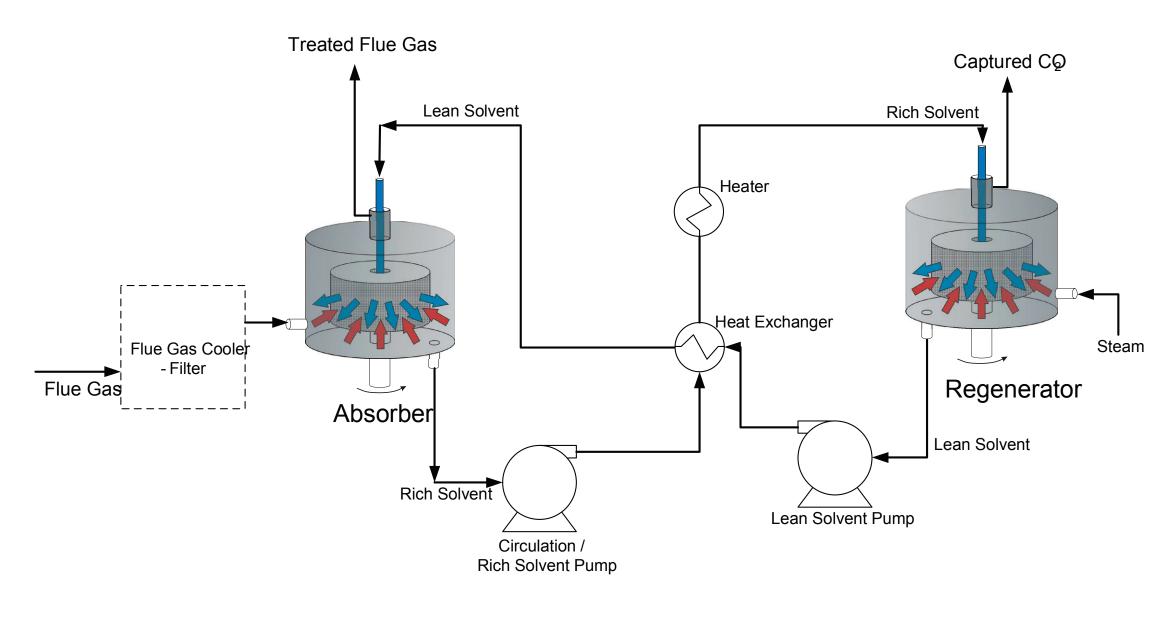
Technology Background

The objective of this project is to develop and validate a transformational carbon capture technology—**ROTA-CAP**. This will be achieved by the design, construction, testing, and simulation modelling of novel rotating packed bed (RPB) absorbers and regenerators in an integrated, process-intensified carbon capture system using advanced solvents at bench-scale. The performance of the integrated hardware and solvent will be assessed under a range of operating conditions with simulated flue gases and GTI's natural gas burner flue gas to optimize the process, ahead of long-term testing with coal-fired flue gas at the National Carbon Capture Center (NCCC).

How the technology works ROTA-CAP will utilize the RPB in combination with an advanced solvent technology in an effort to validate a significant breakthrough in reducing the capital and operating expenditure of carbon capture system to meet or exceed DOE's cost targets for carbon capture from low percentage CO₂ sources, such as pulverized coal (PC)fired power plant flue gas or natural gas-derived flue gas. These targets are for a new coal-fired power plant with CO₂ capture to achieve \geq 90 % of the CO₂ from the flue gas. The product CO_2 is to have a purity of \geq 95 % and a cost of electricity at least 30% lower than that of a supercritical PC with CO₂ capture or approximately \$30 per tonne of CO_2 by 2030.

The fundamental science

The RPB absorber is a type of high gravity reactor (HIGEE), originally developed in the 1930's. It replaces the conventional gas-liquid contactor towers used in for gas processing.


- Rotating disk of a packing material that generates a high gravity centrifugal force.
- Solvent flows from the inner edge of the rotating disk radially towards the outer edge.
- Incoming

Rotation (~600–1,000 rpm) generates high centrifugal forces that provide:

- High liquid shear.
- Improved CO₂ mass transfer efficiency.

Highly concentrated solvents can be used in small reactors to absorb similar quantities of gas that require tall contacting columns and high solvent circulation rates. This leads to higher CO₂ loadings and greater process efficiency.

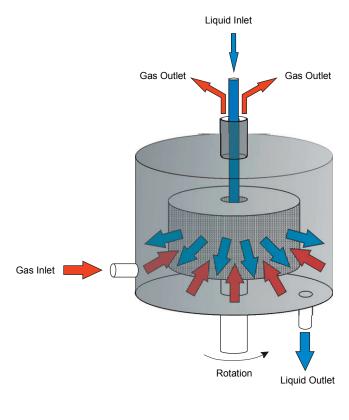
ROTA-CAP System Process Flow Diagram

- countercurrent flue gas contacts the solvent.

Solvent

Height of a Transfer Unit (HTU) for MEA and APBS Solvents Tested in a Prototype RPB Absorber

Other process benefits:


- Reduced sizing requirements of heat exchangers, pumps, and coolers by up to 50%.
- Lower residence time of the solvent in the absorber.
- Reduced oxidative and thermal degradation.
- Decreased solvent top-up requirements by approximately 77%.
- Reduced waste handling and disposal cost by up to 92%.

The use of RPB absorber technology is anticipated to reduce the size and therefore cost of the absorber. Similarly, we expect the size reduction of the RPB regenerator relative to the conventional, static stripper columns would be comparable to that of the analogous absorber technology.

Development efforts to date

In 2016, Carbon Clean Solutions Limited (CCSL) completed an research and development (R&D) program with the Newcastle University, UK and the University of Hull, UK. In the project, a bench-

> scale prototype Rotary Packed Bed Absorber (RPBA) was evaluated in CO₂ capture applications using CCSL's solvent (APBS 2) and the industry standard solvent, monoethanolamine (MEA) at various concentrations. Results show close to 50% smaller height of transfer unit (HTU) for APBS 2 solvent compared to 30% MEA solvent for same absorption rate.

Rotating Packed Bed Reactor

ROTA-CAP Technology Background (continued)

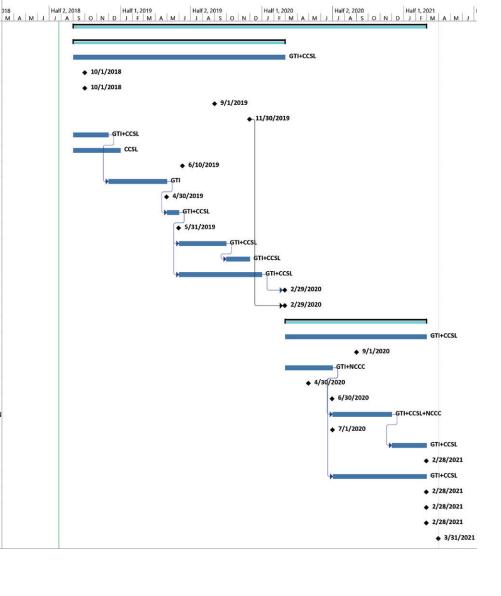
Technical and economic advantages

- The ROTA-CAP technology holds potential to provide economical, efficient carbon capture capabilities, allowing the continual use of fossil fuels to generate clean, low-cost electricity for generations to come.
- A simulation process model for integrated RPB carbon capture systems will be developed, which can be used in future larger-scale deployments.
- A high-level techno-economic analysis (TEA) will prove the value of the ROTA-CAP technology in the carbon capture market. It will also evaluate how ROTA-CAP aligns with DOE's cost target of \leq \$30/tonne CO₂, while achieving \geq 95 % product CO₂ purity.
- RPB reactors offer higher efficiencies and are nonselective to the solvent used, making them easier to scale up than conventional contactors.

Technical and economic challenges

- The integrated use of RPBs as both absorber and regenerator in a single system.
- The mechanical design parameters of rotating equipment.
- Solvent performance during operation.
- Integrating and achieving required solvent regeneration using an RPB regenerator.
- Scaling up of the RPBs may be challenging. We will allow for design limitations of rotating equipment sizing and investigate the modular design approach by designing, building, and testing an integrated RPB absorber and regeneration unit that will work with CCSL's solvent (APBS 2).
- During testing we will determine the solvent performance and modify it as needed to achieve 90% CO₂ removal rate.
- We will allow for design limitations of rotating equipment sizing and investigate the modular design approached to overcome RPB scaling challenges.

Technical Approach/Project Scope


Experimental design and work plan

GTI and Clean Carbon Solutions Ltd. (CCSL) will develop a compact carbon capture system that uses a RPB contactor absorber and rotating bed contactor regenerator. The two sections of the system need to be connected together and operated continuously to validate and optimize the equipment as a cost and energy effective carbon capture system. Ultimately, the system is indifferent to the solvent used. Combining ROTA-CAP with CCSL's proprietary solvent formulation solvent will further improve capture efficiency. Together with CCSL, GTI will develop both the absorber and regenerator through bench scale with testing at GTI and perform reliability and long term testing at NCCC.

Project schedule including key milestones

0	Task	Milesto Numbe	Task Name	Start	Finish	Resource Names
1			Project Total	9/1/18	2/28/21	
2			Budget Period 1	9/1/18	2/29/20	
3	1.01		Project Management and Planning (BP1)	9/1/18	2/29/20	GTI+CCSL
4		1.1	Update Project Management Plan	10/1/18	10/1/18	
5		1.2	Kickoff Meeting	10/1/18	10/1/18	
6		1.3	Submit Annual Report	9/1/19	9/1/19	
7		1.4	Continuation Application	11/30/19	11/30/19	
8	2.01		Design and Costing of the Bench-scale Test Skid	9/1/18	11/30/18	GTI+CCSL
9	2.02		Preliminary Commercial Design Check	9/1/18	12/31/18	CCSL
10		2.1	Develop Preliminary Kinetic Model	6/10/19	6/10/19	
11	3.01		Construction of Test Skid	12/1/18	4/30/19	GTI
12		3.1	Finish Construction of Test Skid	4/30/19	4/30/19	
13	3.02		Commissioning of Test Skid	5/1/19	5/31/19	GTI+CCSL
14		3.2	Start Parametric Testing	5/31/19	5/31/19	
15	4.01		Parametric Testing with Simulated Gas	6/1/19	9/30/19	GTI+CCSL
16	4.02		Parametric Testing with Natural Gas Burner	10/1/19	11/30/19	GTI+CCSL
17	4.03		Data Analysis and Long-term Testing Planning	6/1/19	12/31/19	GTI+CCSL
18		4.1	Update Kinetic Model Based on Experimental Data	2/29/20	2/29/20	
19			GO / NO-GO Decision Point	2/29/20	2/29/20	
20			Budget Period 2	3/1/20	2/28/21	
21	1.02		Project Management and Planning (BP2)	3/1/20	2/28/21	GTI+CCSL
22		1.5	Submit Annual Report	9/1/20	9/1/20	
23	5.01		Transportation and Commissioning	3/1/20	6/30/20	GTI+NCCC
24		5.1	Transport Skid to Host Site	4/30/20	4/30/20	
25		5.2	Complete Commisioning	6/30/20	6/30/20	
26	5.02		Reliability and Operability Testing	7/1/20	11/30/20	GTI+CCSL+N
27		5.3	Start Long Term Testing	7/1/20	7/1/20	
28	5.03		Decommissioning	12/1/20	2/28/21	GTI+CCSL
29		5.4	Removal of Skid and Chemicals from Host Site	2/28/21	2/28/21	
30	6.01		Data Analysis, TEA, and Final Report	7/2/20	2/28/21	GTI+CCSL
31		6.1	Report Analysis of Experimental Data	2/28/21	2/28/21	
32		6.2	Verify Kinetic Model with Real Flue Gas Data	2/28/21	2/28/21	
33		6.3	Complete Economic Analysis	2/28/21	2/28/21	
	-			1000000000		

1.8 Submit Final Technical Rep

Project success criteria

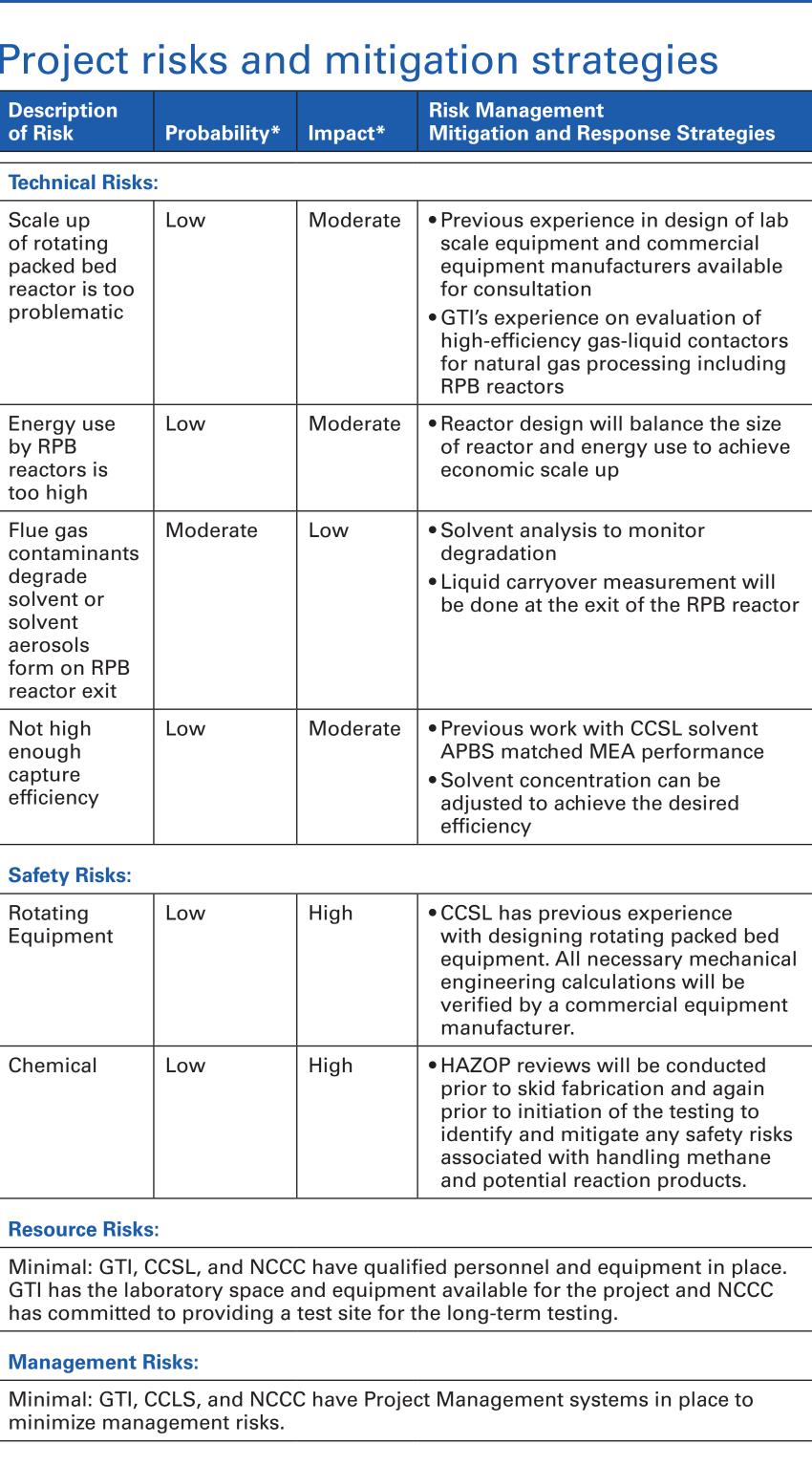
3/31/21 3/31/21

Decision Point	Date	Success Criteria
Go/No-Go decision points	03/01/2020	 Complete design for bench scale ROTA-CAP skid utilizing continuous absorption-regeneration operation.
		• Viable design for a commercial scale unit verified.
		 Successful testing of the ROTA-CAP bench scale skid with RPB absorber and regenerator using simulated gas and natural gas burner flue gas:
		 Continuous operation with absorber and regenerator coupled together. Quick startup and shutdown duration for the skid.
Completion	03/01/2021	
Completion of the project	03/01/2021	 Successful long duration testing: Cumulative 1000 hr testing with real flue gas. Minimal solvent carryover and degradation.

Project risks and mitigation strategies

Description of Risk	Probability*	Impact*					
Technical Risks:							
Scale up of rotating packed bed reactor is too problematic	Low	Moderate					
Energy use by RPB reactors is too high	Low	Moderate					
Flue gas contaminants degrade solvent or solvent aerosols form on RPB reactor exit	Moderate	Low					
Not high enough capture efficiency	Low	Moderate					
Safety Risks:							
Rotating Equipment	Low	High					
Chemical	Low	High					

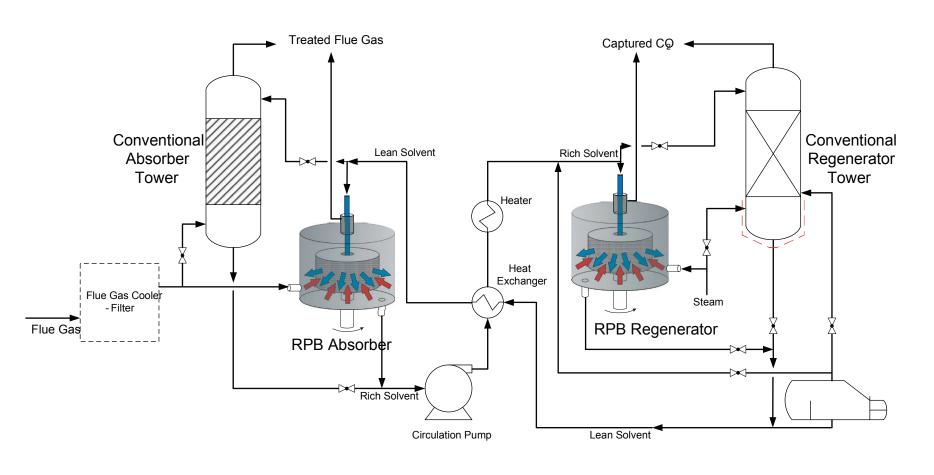
esource Risks


Minimal: GTI, CCSL, and NCCC have gualified personnel and equipment in place. GTI has the laboratory space and equipment available for the project and NCCC has committed to providing a test site for the long-term testing.

Management Risks:

minimize management risks.

Progress and Current Status


Description of test equipment

GTI will build a 50kWe (1000kg/day CO₂ removal) equivalent scale integrated carbon capture skid. The skid will have a flue gas cooling and filtration section available to be used when necessary and will be designed to be able to operate with either RPB contactors or conventional columns or a combination of each.

The key variables will include:

- Rotating packed bed rotational speed 500–2000 RPM
- Absorber Liquid/Gas ratio 0.5–5.0 kg/m3
- Solvent circulation rate 30–150 kg/h
- Solvent concentration/viscosity 40–80 wt.% (5–100 cP)
- Regenerator operating pressure/temperature 0.0–1.0 bar(g) (100–130°C)
- Flue gas composition (synthetic, natural gas-fired, coal-fired).

The task duration for testing of the bench-scale ROTA-CAP skid at GTI is planned to be 5 months. This includes 3 months for simulated gas testing and 1 month natural gas burner flue gas testing with 1 month of testing that can be used for either. Long-term testing at NCCC is planned to be a cumulative 1000 hr test.

Integrated Bench-Scale Rota-Cap Test Skid with Conventional Tower Sections

Future Plans

The project aims to increase the technology readiness level (TRL) of the existing technology, with respect to carbon capture, from its current level of TRL 3 to TRL 5 on completion of the project. Through validation of the technology, both experimentally and through process simulation, ROTA-CAP will take strides towards providing an economically viable carbon capture system for industrial flue gas sources.

This project will lead to continued development of rotating pack bed based carbon capture technology to higher TRLs.

Contact: Mr. Osman Akpolat osman.akpolat@gastechnology.org